智算中心的发展基于最新人工智能理论和领先的人工智能计算架构,当前算法模型的发展趋势以Al大模型为代表,算力技术与算法模型是其中的核心关键,算力技术以Al芯片、Al服务器、Al集群为载体。
GPU主宰算力芯片,Al信创驱动国产算力发展:得益于硬件支持与软件编程、设计方面的优势,CPU+GPU成为了目前应用最广泛的平台。Al分布式计算的市场主要由算力芯片(55-75%)、内存(10-20%)和互联设备(10-20%)三部分组成。
由于ChatGPT的爆火,GPU需求明显,英伟达也加大对三星和SK海力士HBM3的订单。2023年10月,SK海力士表示,已经在2023年出售了明年HBM3和HBM3E的所有产量。据Omdia预测,到2025年,HBM市场的总收入将达到25亿美元。
集成算力与存力,先进封装产能紧缺:CoWoS封装技术是目前集成HBM与CPU/GPU处理器的主流方案。台积电主导全球CoWoS封装市场。据IDC预测,全球CoWoS供需缺口约20%,2024年台积电的CoWos封装产能将较2023年提升一倍,2.5D/3D先进封装市场规模在2023-2028年将以22%的CAGR高速增长。
Al算力对高效电源提出新需求,背面供电技术蓄势待发:越来越高度化的集成会造成针对加速芯片的电源解决方案越来越复杂,方案需要不同电压、不同路的多路输入,这种情况下电压轨会越来越多。
台积电、三星、英特尔等芯片大厂都在积极布局背面供电网络技术,为日益复杂的芯片提供高效供电方案,其中英特尔较为领先。
好文章,需要你的鼓励
来自耶路撒冷希伯来大学的研究团队开发了WHISTRESS,一种创新的无需对齐的句子重音检测方法,能够识别说话者在语音中强调的关键词语。研究者基于Whisper模型增加了重音检测组件,并创建了TINYSTRESS-15K合成数据集用于训练。实验表明,WHISTRESS在多个基准测试中表现优异,甚至展示了强大的零样本泛化能力。这项技术使语音识别系统不仅能理解"说了什么",还能捕捉"如何说"的细微差别,为人机交互带来更自然的体验。
这项研究提出了"力量提示"方法,使视频生成模型能够响应物理力控制信号。研究团队来自布朗大学和谷歌DeepMind,他们通过设计两种力提示——局部点力和全局风力,让模型生成符合物理规律的视频。惊人的是,尽管仅使用约15,000个合成训练样本,模型展现出卓越的泛化能力,能够处理不同材质、几何形状和环境下的力学交互。研究还发现模型具有初步的质量理解能力,相同力量对不同质量物体产生不同影响。这一突破为交互式视频生成和直观世界模型提供了新方向。
北京交通大学与西蒙弗雷泽大学联合研发的混合神经-MPM方法实现了实时交互式流体模拟。该方法巧妙结合神经物理学与传统数值求解器,在低时空分辨率下运行神经网络并设置保障机制自动切换到MPM,显著降低计算延迟同时保持高保真度。团队还设计了基于扩散模型的控制器,支持用户通过简单草图直观控制流体行为,为游戏、VR和设计领域提供了实用解决方案。
这项研究介绍了EgoZero,一种创新的机器人学习系统,能够仅通过Project Aria智能眼镜捕获的人类示范数据,训练出零样本迁移的机器人操作策略。研究团队提出了一种形态无关的状态-动作表示方法,使用点集来统一人类和机器人数据,并开发了从原始视觉输入中提取准确3D表示的技术。在没有任何机器人训练数据的情况下,EgoZero在7种真实世界操作任务上实现了70%的成功率,展示了强大的泛化能力,为解决机器人学习中的数据瓶颈问题提供了新思路。