
智算中心的发展基于最新人工智能理论和领先的人工智能计算架构,当前算法模型的发展趋势以Al大模型为代表,算力技术与算法模型是其中的核心关键,算力技术以Al芯片、Al服务器、Al集群为载体。
GPU主宰算力芯片,Al信创驱动国产算力发展:得益于硬件支持与软件编程、设计方面的优势,CPU+GPU成为了目前应用最广泛的平台。Al分布式计算的市场主要由算力芯片(55-75%)、内存(10-20%)和互联设备(10-20%)三部分组成。
由于ChatGPT的爆火,GPU需求明显,英伟达也加大对三星和SK海力士HBM3的订单。2023年10月,SK海力士表示,已经在2023年出售了明年HBM3和HBM3E的所有产量。据Omdia预测,到2025年,HBM市场的总收入将达到25亿美元。
集成算力与存力,先进封装产能紧缺:CoWoS封装技术是目前集成HBM与CPU/GPU处理器的主流方案。台积电主导全球CoWoS封装市场。据IDC预测,全球CoWoS供需缺口约20%,2024年台积电的CoWos封装产能将较2023年提升一倍,2.5D/3D先进封装市场规模在2023-2028年将以22%的CAGR高速增长。
Al算力对高效电源提出新需求,背面供电技术蓄势待发:越来越高度化的集成会造成针对加速芯片的电源解决方案越来越复杂,方案需要不同电压、不同路的多路输入,这种情况下电压轨会越来越多。
台积电、三星、英特尔等芯片大厂都在积极布局背面供电网络技术,为日益复杂的芯片提供高效供电方案,其中英特尔较为领先。







































好文章,需要你的鼓励
Linux基金会宣布成立代理AI基金会,为AI智能体基础设施开发提供厂商中立的监督。尽管业界承认AI智能体存在安全问题,高德纳咨询公司警告许多企业项目可能因缺乏商业价值而被取消,但基金会仍致力于为AI公司提供中立平台。Anthropic、Block和OpenAI分别贡献了三个项目,包括模型上下文协议、开源AI智能体框架和机器可读文档标准。
快手科技研究团队提出了熵比截断机制,用于解决强化学习训练中AI容易"走偏"的问题。该方法通过监控AI学习前后思维活跃度变化,在关键时刻进行精准干预,既保证训练稳定性又维持探索能力。在数学推理任务中,此方法显著提升了模型性能并改善了训练稳定性,为AI训练领域提供了新的解决思路。
微软计划在未来四年内向印度投资175亿美元,这是该公司在亚洲的最大投资。投资将用于建设新数据中心、AI基础设施和技能培训项目。此举正值全球科技巨头加速在印度布局,该国庞大的互联网和智能手机用户群体使其成为关键战场。投资还包括在海德拉巴建设新数据中心区域,并与印度政府合作将AI能力整合到公共数字平台中。
EditThinker是北京航空航天大学与美团等机构联合研发的图像编辑AI框架,让AI在编辑图片时能够像人类一样进行反复思考和优化。该系统通过"批评-优化-重试"的循环机制,将传统的一次性编辑转变为迭代改进过程,在四个权威测试平台上显著提升了现有编辑模型的表现,特别是在需要复杂推理的编辑任务中效果突出。