绿色数据中心建设看似高投入,看不到比较快的回报率,事实并非如此。
探讨之前提到的分布式不间断电源系统,分布式采用锂电方案,在经济效益上具有双重提升:一方面在建设阶段带来经济效益,另一方面在运维管理上同样实现成本优化。
大家发现,当前数据中心空置率,反映出目前在数据中心领域,它的业务发展、运营以及建设方面存在不均衡现象。
这就意味着数据中心并非能够迅速达到最佳运营点,通常需要经历一个业务增长的过程,我们称之为“业务爬坡期”,甚至有可能某些数据中心的资源上架率最终也不会很高。
尤其是在算电协同背景下,协同意味着“算”和“电”的建设应当是伴随式发展。所需的算力支撑应与电力供给相匹配,即根据实际需要的算力水平来购买相应的电力支持。
而相较于传统的集中式方案,这种伴随式建设就会遇到很大的瓶颈。
传统的UPS+铅酸方案,确实一定程度上通过规模效应实现了成本效益,单个设备容量可达到600kVA,甚至更高,均摊到每个机柜的成本确实较低。
然而,实际面临的问题是:当我们按照整个楼层的容量来建设UPS + 铅酸系统后,业务增长是否能够迅速跟上?
在大多数情况下,业务增长很难立即匹配这样的规模,通常需要一两年,甚至三四年时间来逐步增长,有的最终可能都无法达到预期的上架率。
相比之下,采用分布式方式进行建设,用多少机柜,就上多少机柜的电力建设,这显得尤为宝贵。
从投资的角度,我们进行过投资曲线的测算。集中式方案通常是分阶段、大阶梯式进行建设,每个建设阶段以几百个机柜为增量单位。
与集中式方案不同,分布式电源的建设模式是以单个机柜为单元,呈现斜线式线性增长。
在集中式方案中,起步就是一个较大的投资台阶,而到了下一个周期阶段,又是一次大的投资跃升,如上图所示。
运维方面,众所周知,铅酸电池作为传统的电池类型,其循环寿命非常有限。通常情况下,在UPS主机寿命到达之前,铅酸电池大约每四至五年就需要更换一次。
这不仅给数据中心的整体运营带来了较大的压力,而且铅酸电池的维护本身也较为耗费人力和电力,这是导致运营成本增加的一个重要因素。
相比之下,采用分布式锂电方案可以显著提升经济效益。
同时,业界也在探讨将新兴的储能技术应用于数据中心。
从备电的角度来看,锂电池的电量及其性能完全能够满足削峰填谷的应用需求,这样的话,很大程度,尤其在峰谷电价比较大的区域,采用分布式锂电方案能够给数据中心带来很好的电费节省。
这种技术转型,无疑将为数据中心带来更为高效和经济的运维体验。
好文章,需要你的鼓励
人工智能领域正在通过改进模型工作方式来释放新功能。研究人员开发了一种名为"SVDquant"的4位量化系统,可以使扩散模型运行速度提高3倍,同时提升图像质量和兼容性。这种技术通过压缩参数和激活值来大幅降低内存和处理需求,为资源受限的系统带来新的可能性。
Meta公司开发了一种机器学习模型SEAMLESSM4T,能够实现36种语言之间的近即时语音翻译。该模型采用创新方法,利用互联网音频片段避免了繁琐的数据标注。这一突破性技术有望简化多语言交流,但仍需解决噪音环境、口音等挑战,并关注技术可能带来的偏见问题。
生物制药行业正积极拥抱人工智能技术,大型企业投入巨资,小型公司谨慎布局。行业面临人才、数据和工作流程等挑战,但预计到2025年将在AI就绪度方面取得实质性进展。AI有望加速药物研发,提高效率,最终造福患者,重塑医疗保健的未来。
随着 AI 需求激增,数据中心行业面临严峻挑战。能源消耗激增威胁可持续发展目标,新项目遭遇公众反对。电力供应和分配方式亟需改革,行业或将迎来动荡的 2025 年。