绿色数据中心建设看似高投入,看不到比较快的回报率,事实并非如此。
探讨之前提到的分布式不间断电源系统,分布式采用锂电方案,在经济效益上具有双重提升:一方面在建设阶段带来经济效益,另一方面在运维管理上同样实现成本优化。
大家发现,当前数据中心空置率,反映出目前在数据中心领域,它的业务发展、运营以及建设方面存在不均衡现象。
这就意味着数据中心并非能够迅速达到最佳运营点,通常需要经历一个业务增长的过程,我们称之为“业务爬坡期”,甚至有可能某些数据中心的资源上架率最终也不会很高。
尤其是在算电协同背景下,协同意味着“算”和“电”的建设应当是伴随式发展。所需的算力支撑应与电力供给相匹配,即根据实际需要的算力水平来购买相应的电力支持。
而相较于传统的集中式方案,这种伴随式建设就会遇到很大的瓶颈。
传统的UPS+铅酸方案,确实一定程度上通过规模效应实现了成本效益,单个设备容量可达到600kVA,甚至更高,均摊到每个机柜的成本确实较低。
然而,实际面临的问题是:当我们按照整个楼层的容量来建设UPS + 铅酸系统后,业务增长是否能够迅速跟上?
在大多数情况下,业务增长很难立即匹配这样的规模,通常需要一两年,甚至三四年时间来逐步增长,有的最终可能都无法达到预期的上架率。
相比之下,采用分布式方式进行建设,用多少机柜,就上多少机柜的电力建设,这显得尤为宝贵。
从投资的角度,我们进行过投资曲线的测算。集中式方案通常是分阶段、大阶梯式进行建设,每个建设阶段以几百个机柜为增量单位。
与集中式方案不同,分布式电源的建设模式是以单个机柜为单元,呈现斜线式线性增长。
在集中式方案中,起步就是一个较大的投资台阶,而到了下一个周期阶段,又是一次大的投资跃升,如上图所示。
运维方面,众所周知,铅酸电池作为传统的电池类型,其循环寿命非常有限。通常情况下,在UPS主机寿命到达之前,铅酸电池大约每四至五年就需要更换一次。
这不仅给数据中心的整体运营带来了较大的压力,而且铅酸电池的维护本身也较为耗费人力和电力,这是导致运营成本增加的一个重要因素。
相比之下,采用分布式锂电方案可以显著提升经济效益。
同时,业界也在探讨将新兴的储能技术应用于数据中心。
从备电的角度来看,锂电池的电量及其性能完全能够满足削峰填谷的应用需求,这样的话,很大程度,尤其在峰谷电价比较大的区域,采用分布式锂电方案能够给数据中心带来很好的电费节省。
这种技术转型,无疑将为数据中心带来更为高效和经济的运维体验。
好文章,需要你的鼓励
DeepResearchGym是一个创新的开源评估框架,专为深度研究系统设计,旨在解决当前依赖商业搜索API带来的透明度和可重复性挑战。该系统由卡内基梅隆大学研究团队开发,结合了基于ClueWeb22和FineWeb大型网络语料库的可重复搜索API与严格的评估协议。实验表明,使用DeepResearchGym的系统性能与使用商业API相当,且在评估指标间保持一致性。人类评估进一步证实了自动评估协议与人类偏好的一致性,验证了该框架评估深度研究系统的有效性。
这项研究介绍了FinTagging,首个面向大型语言模型的全面财务信息提取与结构化基准测试。不同于传统方法,它将XBRL标记分解为数值识别和概念链接两个子任务,能同时处理文本和表格数据。在零样本测试中,DeepSeek-V3和GPT-4o表现最佳,但在细粒度概念对齐方面仍面临挑战,揭示了当前大语言模型在自动化XBRL标记领域的局限性,为金融AI发展提供了新方向。
这项研究介绍了SweEval,一个新型基准测试,用于评估大型语言模型在企业环境中处理脏话的能力。研究团队从Oracle AI等多家机构的专家创建了一个包含八种语言的测试集,模拟不同语调和上下文的真实场景。实验结果显示,LLM在英语中较少使用脏话,但在印地语等低资源语言中更易受影响。研究还发现较大模型通常表现更好,且多语言模型如Llama系列在处理不当提示方面优于其他模型。这项工作对企业采用AI技术时的安全考量提供了重要参考。
这项研究提出了"VeriFree"——一种不需要验证器的方法,可以增强大型语言模型(LLM)的通用推理能力。传统方法如DeepSeek-R1-Zero需要验证答案正确性,限制了其在数学和编程以外领域的应用。VeriFree巧妙地计算正确答案在模型生成的推理过程后出现的概率,作为评估和训练信号。实验表明,这种方法不仅能匹配甚至超越基于验证器的方法,还大幅降低了计算资源需求,同时消除了"奖励黑客"问题。这一突破将有助于开发出在化学、医疗、法律等广泛领域具有更强推理能力的AI系统。