国产开源之光:DeepSeek-V3划重点
DeepSeek-V3 采用了 671B 参数 MoE 架构,配备约 37B 激活单元,训练使用14.8T Token数据。
一路走来,从一个低调、但能引起行业普遍降价的选手,到现在的国产+开源之光引发全球瞩目。最近刚刚其最新的DeepSeek-V3发布后,海内外一片刷屏。本篇就划几处重点:
一句话介绍:DeepSeek-V3 采用了 671B 参数 MoE 架构,配备约 37B 激活单元,训练使用14.8T Token数据。
数学能力 / MATH 500、AIME 2024 等测试:显著优于 Claude 3.5 Sonnet 和 GPT-4o;
代码能力 / Codeforces: 同样优于其他主流大模型,刷新了SOTA。
3、极佳训练成本优势:总计消耗了 278.8 万 GPU 小时。按照 NVIDIA H800 每小时 2 美元的租赁价格计算,训练成本约为 560 万美元。(相比之下,Llama 3模型的计算消耗了3930万H100小时...)
低训练成本可能是本次DeepSeek-V3在海外产生的最大反响的一点:
DeepSeek-V3的训练仅使用了2048张H800 (然而,H800 的互连带宽较低:300 GB/s,对比 H100 的 900 GB/s,这在训练过程中可能成为性能瓶颈,因为节点间的通信效率会受到影响,为此DeepSeek提出了多种优化方案,例如自主研发通信内核而非依赖张量并行,以及采用混合精度(FP8)训练等技术来提升效率。)
(搬运官方信息)通过算法和工程上的创新,DeepSeek-V3 的生成吐字速度从 20 TPS 大幅提高至 60 TPS,相比 V2.5 模型实现了 3 倍的提升,为用户带来更加迅速流畅的使用体验。
最后,根据Artifical Analysis的独立测评报告“A new leader in open source AI”:
DeepSeek-V3在其Quality Index榜单上超过GPT-4o,仅次于o1和Gemini 2.0 Flash,与Claude 3.5 Sonnet持平。
在此前DeepSeek-V2的文章中曾经提到过其核心技术创新MLA(可见开源模型社区又一位重量级选手掀桌子),这些技术在V2得到验证后,现在也成为了V3的技术核心。此外互联网上,包括大神Andrej Karpathy也给予了极高评价:
应该表示祝贺!Congratulations to DeepSeek,也祝那些真正走在星辰大海路上的选手创造更多佳绩!
0赞好文章,需要你的鼓励
推荐文章
AI无法处理长文档?字节提出人工海马网络,让AI像人脑一样高效处理超长信息
NVIDIA研究团队开发出名为Lyra的AI系统,能够仅凭单张照片生成完整3D场景,用户可自由切换观察角度。该技术采用创新的"自蒸馏"学习方法,让视频生成模型指导3D重建模块工作。系统还支持动态4D场景生成,在多项测试中表现优异。这项技术将大大降低3D内容创作门槛,为游戏开发、电影制作、VR/AR应用等领域带来重大突破。
生物技术公司SpotitEarly开发了一种独特的居家癌症筛查方法,结合训练有素的比格犬嗅觉能力和AI技术分析人体呼气样本。该公司研究显示,18只训练犬能以94%的准确率检测出早期癌症。用户只需在家收集呼气样本并寄送至实验室,由训练犬识别癌症特异性气味,AI平台验证犬类行为。公司计划明年通过医师网络推出筛查套件,单项癌症检测约250美元。
谷歌DeepMind团队创新性地让Gemini 2.5模型在无需训练的情况下学会理解卫星多光谱图像。他们将复杂的12波段卫星数据转换为6张可理解的伪彩色图像,配以详细文字说明,使通用AI模型能够准确分析遥感数据。在多个基准测试中超越现有模型,为遥感领域AI应用开辟了全新道路。