斯特凡·哈勒(Stefan Harrer)参加了TEDxSydney Salon,在演讲中,哈勒表示,生成式人工智能为科学家提供了强大的辅助工具,能够帮助他们克服传统科学方法在面对复杂庞大问题时的局限,同时,生成式AI与科学家的结合将开启新的启蒙时代,让科学能够更好地改变世界。

斯特凡·哈勒博士是澳大利亚国家科学机构CSIRO的人工智能科学总监,其使命是充分发掘人工智能代理的力量,彻底改变科学发现的过程。在IBM研究院担任高级领导职务期间,他领导了人工智能驱动的癫痫管理方面的工作,并开发了世界上首个用于癫痫发作预测的人工智能可穿戴设备。他还是人工智能伦理的热情倡导者、初创企业和政府的导师和顾问,拥有73项授权专利。
在演讲中,哈勒提到,玛丽·居里最初只是亨利·贝克雷尔的助手,却凭借在放射性领域的开创性研究,成为了科学界的传奇,赢得了两次诺贝尔奖。同样,查尔斯·达尔文起初是地质学家亚当·塞奇威克的助手,但凭借提出进化论超越了自己的导师。历史告诉我们,即使是天才科学家,他们的早期成就也往往是在他人的帮助或合作下取得的,如果我们能为地球上每一位科学家提供如此高水准的研究助手,会发生什么?
科学方法是人类史上最伟大的发明之一。通过观察自然、提出假设、设计实验验证假设,科学家们塑造了现代世界。从抗击疾病,到理解经济体系,再到在火星表面进行探测,科学方法始终是核心。然而,随着研究领域的复杂性和规模不断增长,科学方法变得有些捉襟见肘,特别是在生物学这个研究生命系统的领域,生物数据既混乱又规模庞大,即使是研究最小的生物学系统,实验工作也极为繁琐和耗时。
例如,蛋白质是生命的最小构建块之一。某些蛋白质用来加速化学反应,某些则赋予细胞结构,另一些负责运输物质。目前已知的独特蛋白质种类超过8.26亿种,而单个细胞中的蛋白质分子数量可达到2000万之多,从分子到36万亿个细胞组成的人体,每一秒钟有约1 sextillion(1后面21个零)个蛋白质在复杂地相互作用。我们并非缺乏优秀的科学方法,而是系统规模的庞大超出了人类的认知极限,这种困境不仅适用于生物学,也存在于理解宇宙或其他复杂系统的问题上。

人工智能已经显示出在某些狭窄领域赋予科学家力量的潜力。例如,AI通过分析癫痫患者脑电波活动可以识别发作的早期信号,或者筛选数亿个信号样本寻找外星技术的签名。但目前这些专门定制的AI模型仍具有“狭义性”,只能完成其专门训练的任务,同时需要科学家能理解模型、使用模型,并解释其结果,这种专门的知识和技能通常需要一个完整的专家团队共同协作。据统计,仅全球16%的科学家和18%的生物学家在其研究中使用AI,构建并部署尖端AI模型本身已经成为技术壁垒,使得许多科学家的想法停留在实验室。然而,生成式人工智能的出现,为科学家解除了这些限制。
2023年初,生成式AI几乎能够利用所有公开可得的数字化信息,无需专门训练的情况下就能够完成各种任务。随后生成式AI学会了如何使用工具来解决问题,包括非AI工具以及实际的物理设备。最近,一项实证研究首次证明,借助AI代理助手与科研人员协作,科学家可以生成更具新颖性与创造性的研究想法。从假说生成、实验设计到数据分析,AI代理的协助首次使科学家能够将积累了几个世纪的科学方法和所有科学数据结合使用。澳大利亚国家科学机构CSIRO已经着手开发AI代理,帮助科学家解码生命密码、设计新蛋白质、预测其功能,并运行实验,这种AI代理可以将原先3至12个月的分析时间缩短到4至5天。
此外,制药行业也开始利用AI力量改造从药物发现到临床试验的新药研发流程。Insilico Medicine使用生成式AI将新药研发周期缩短了约一半时间,大大节省成本与人力;新冠疫苗mRNA技术开发公司BioNTech已开始开发专门为科学家设计的AI助手,以自动化实验研究工作流程;而AlphaFold的开发者们也在尝试构建AI助手,帮助科学家规划和执行实验并预测结果。DeepMind的创始人德米斯·哈萨比斯曾将世界知识比喻为知识树,借助生成式AI,我们或许能第一次获得探索整棵知识树的能力,理解其所有复杂性和相互关联,并帮助人类攀登树冠。
人类的历史中,科学创新的驱动力始终来源于人类的好奇心与创造力。生成式AI与科学之间的交集预示着一个新启蒙时代的开启,AI将改变科学,而科学将改变这个世界。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。