总部位于帕洛阿尔托的新创公司 Inception,由斯坦福大学计算机科学教授 Stefano Ermon 创立,声称已开发出一种基于"扩散"技术的全新 AI 模型。Inception 将其称为基于扩散的大语言模型,简称"DLM"。
目前受到最多关注的生成式 AI 模型大致可分为两类:大语言模型 (LLM) 和扩散模型。基于 Transformer 架构的 LLM 主要用于文本生成。而扩散模型则为 Midjourney 和 OpenAI 的 Sora 等 AI 系统提供支持,主要用于创建图像、视频和音频。
据该公司介绍,Inception 的模型具备传统大语言模型的功能,包括代码生成和问答能力,但性能显著提升,且计算成本更低。
Ermon 告诉 TechCrunch,他在斯坦福实验室长期研究如何将扩散模型应用于文本。他的研究基于这样一个观察:与扩散技术相比,传统大语言模型相对较慢。
对于大语言模型,Ermon 表示:"在生成第一个词之前你无法生成第二个词,在生成前两个词之前你也无法生成第三个词。"
Ermon 一直在寻找将扩散方法应用于文本的方式,因为与按顺序工作的大语言模型不同,扩散模型首先对要生成的数据 (如图片) 进行粗略估计,然后一次性将数据聚焦成型。
Ermon 提出假设,使用扩散模型可以并行生成和修改大块文本。经过多年尝试,Ermon 和他的一名学生取得了重大突破,并在去年发表的研究论文中详细说明了这一成果。
认识到这项进展的潜力,Ermon 于去年夏天创立了 Inception,并邀请两位前学生——UCLA 教授 Aditya Grover 和康奈尔大学教授 Volodymyr Kuleshov 共同领导公司。
虽然 Ermon 婉拒讨论 Inception 的融资情况,但据 TechCrunch 了解,Mayfield Fund 已投资该公司。
Emron 表示,Inception 已经获得了包括未具名的财富 100 强企业在内的多个客户,这些客户都急需降低 AI 延迟并提高处理速度。
"我们发现我们的模型能够更高效地利用 GPU,"Ermon 提到这些在生产环境中常用的计算机芯片时说,"我认为这意味着重大突破。这将改变人们构建语言模型的方式。"
Inception 提供 API 接口、本地部署和边缘设备部署选项,支持模型微调,并提供一套适用于各种场景的开箱即用 DLM。该公司声称其 DLM 的运行速度可达传统大语言模型的 10 倍,成本则降低至十分之一。
"我们的'小型'编程模型与 [OpenAI 的] GPT-4 mini 性能相当,但速度快 10 倍以上,"该公司发言人告诉 TechCrunch。"我们的'迷你'模型性能超过 [Meta 的] Llama 3.1 8B 等小型开源模型,每秒可处理超过 1,000 个 token。"
"Token"是业内用语,指原始数据的基本单位。如果 Inception 的声明属实,每秒处理 1,000 个 token 确实是一个令人印象深刻的速度。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。