总部位于帕洛阿尔托的新创公司 Inception,由斯坦福大学计算机科学教授 Stefano Ermon 创立,声称已开发出一种基于"扩散"技术的全新 AI 模型。Inception 将其称为基于扩散的大语言模型,简称"DLM"。
目前受到最多关注的生成式 AI 模型大致可分为两类:大语言模型 (LLM) 和扩散模型。基于 Transformer 架构的 LLM 主要用于文本生成。而扩散模型则为 Midjourney 和 OpenAI 的 Sora 等 AI 系统提供支持,主要用于创建图像、视频和音频。
据该公司介绍,Inception 的模型具备传统大语言模型的功能,包括代码生成和问答能力,但性能显著提升,且计算成本更低。
Ermon 告诉 TechCrunch,他在斯坦福实验室长期研究如何将扩散模型应用于文本。他的研究基于这样一个观察:与扩散技术相比,传统大语言模型相对较慢。
对于大语言模型,Ermon 表示:"在生成第一个词之前你无法生成第二个词,在生成前两个词之前你也无法生成第三个词。"
Ermon 一直在寻找将扩散方法应用于文本的方式,因为与按顺序工作的大语言模型不同,扩散模型首先对要生成的数据 (如图片) 进行粗略估计,然后一次性将数据聚焦成型。
Ermon 提出假设,使用扩散模型可以并行生成和修改大块文本。经过多年尝试,Ermon 和他的一名学生取得了重大突破,并在去年发表的研究论文中详细说明了这一成果。
认识到这项进展的潜力,Ermon 于去年夏天创立了 Inception,并邀请两位前学生——UCLA 教授 Aditya Grover 和康奈尔大学教授 Volodymyr Kuleshov 共同领导公司。
虽然 Ermon 婉拒讨论 Inception 的融资情况,但据 TechCrunch 了解,Mayfield Fund 已投资该公司。
Emron 表示,Inception 已经获得了包括未具名的财富 100 强企业在内的多个客户,这些客户都急需降低 AI 延迟并提高处理速度。
"我们发现我们的模型能够更高效地利用 GPU,"Ermon 提到这些在生产环境中常用的计算机芯片时说,"我认为这意味着重大突破。这将改变人们构建语言模型的方式。"
Inception 提供 API 接口、本地部署和边缘设备部署选项,支持模型微调,并提供一套适用于各种场景的开箱即用 DLM。该公司声称其 DLM 的运行速度可达传统大语言模型的 10 倍,成本则降低至十分之一。
"我们的'小型'编程模型与 [OpenAI 的] GPT-4 mini 性能相当,但速度快 10 倍以上,"该公司发言人告诉 TechCrunch。"我们的'迷你'模型性能超过 [Meta 的] Llama 3.1 8B 等小型开源模型,每秒可处理超过 1,000 个 token。"
"Token"是业内用语,指原始数据的基本单位。如果 Inception 的声明属实,每秒处理 1,000 个 token 确实是一个令人印象深刻的速度。
好文章,需要你的鼓励
AI颠覆预计将在2026年持续,推动企业适应不断演进的技术并扩大规模。国际奥委会、Moderna和Sportradar的领导者在纽约路透社峰会上分享了他们的AI策略。讨论焦点包括自建AI与购买第三方资源的选择,AI在内部流程优化和外部产品开发中的应用,以及小型模型在日常应用中的潜力。专家建议,企业应将AI建设融入企业文化,以创新而非成本节约为驱动力。
字节跳动等机构联合发布GAR技术,让AI能同时理解图像的全局和局部信息,实现对多个区域间复杂关系的准确分析。该技术通过RoI对齐特征重放方法,在保持全局视野的同时提取精确细节,在多项测试中表现出色,甚至在某些指标上超越了体积更大的模型,为AI视觉理解能力带来重要突破。
Spotify在新西兰测试推出AI提示播放列表功能,用户可通过文字描述需求让AI根据指令和听歌历史生成个性化播放列表。该功能允许用户设置定期刷新,相当于创建可控制算法的每周发现播放列表。这是Spotify赋予用户更多控制权努力的一部分,此前其AI DJ功能也增加了语音提示选项,反映了各平台让用户更好控制算法推荐的趋势。
Inclusion AI团队推出首个开源万亿参数思维模型Ring-1T,通过IcePop、C3PO++和ASystem三项核心技术突破,解决了超大规模强化学习训练的稳定性和效率难题。该模型在AIME-2025获得93.4分,IMO-2025达到银牌水平,CodeForces获得2088分,展现出卓越的数学推理和编程能力,为AI推理能力发展树立了新的里程碑。