Cohere for AI(AI 创业公司 Cohere 的非营利研究实验室)本周发布了一个多模态"开放"AI 模型 Aya Vision,实验室称其为同类最佳。
Aya Vision 可以执行图像说明写作、图片问答、文本翻译,以及在 23 种主要语言中生成摘要等任务。Cohere 还通过 WhatsApp 免费提供 Aya Vision 服务,称这是"让技术突破成果惠及全球研究人员的重要一步"。
"尽管 AI 取得了重大进展,但在不同语言间模型表现的差距仍然很大——这种差距在涉及文本和图像的多模态任务中更为明显," Cohere 在博客文章中写道。"Aya Vision 旨在明确帮助缩小这一差距。"
Aya Vision 有两个版本:Aya Vision 32B 和 Aya Vision 8B。Cohere 表示,其中更为复杂的 Aya Vision 32B 开创了"新境界",在某些视觉理解基准测试中的表现超过了 Meta 的 Llama-3.2 90B Vision 等两倍于其规模的模型。同时,根据 Cohere 的说法,Aya Vision 8B 在某些评估中的表现优于规模是其 10 倍的模型。
这两个模型都可以在 AI 开发平台 Hugging Face 上获取,采用创用 CC 4.0 许可证并附带 Cohere 的可接受使用附录。它们不能用于商业应用。
Cohere 表示,Aya Vision 使用"多样化"的英语数据集进行训练,实验室将这些数据集翻译并用于创建合成标注。标注(也称为标签)在训练过程中帮助模型理解和解释数据。例如,训练图像识别模型的标注可能是对物体的标记或指代图像中每个人、地点或物体的说明。
根据 Cohere 的说法,使用合成标注(即由 AI 生成的标注)训练 Aya Vision 使实验室能够在使用更少资源的同时实现具有竞争力的性能。
"这展示了我们对效率的关注,以及用更少的计算资源做更多事情的能力," Cohere 在其博客中写道。"这也使我们能够为通常计算资源有限的研究社区提供更大的支持。"
除了 Aya Vision,Cohere 还发布了一个新的基准测试套件 AyaVisionBench,旨在测试模型在"视觉-语言"任务方面的能力,如识别两张图片之间的差异和将截图转换为代码。
AI 行业正处于所谓的"评估危机"之中,这是由于流行的基准测试给出的综合评分与大多数 AI 用户关心的任务熟练程度的相关性较差。Cohere 认为 AyaVisionBench 是解决这一问题的一步,提供了一个"广泛且具有挑战性"的框架来评估模型的跨语言和多模态理解能力。
希望事实确实如此。
"该数据集作为一个强大的基准,用于评估多语言和真实场景中的视觉-语言模型," Cohere 研究人员在 Hugging Face 上的帖子中写道。"我们向研究社区开放这个评估集,以推进多语言多模态评估的发展。"
好文章,需要你的鼓励
科技巨头IBM今日宣布推出新的区块链数字资产平台,专为金融机构和受监管企业设计。该平台名为"数字资产避风港",将为银行、企业和政府提供比特币、以太坊、稳定币和代币化资产的安全管理服务。平台由IBM与数字钱包基础设施提供商Dfns合作开发,支持超过40个公链和私链的全生命周期管理,并集成第三方身份验证和反洗钱合规工具。
上海AI实验室等机构联合提出FrameThinker框架,革命性地改变了AI处理长视频的方式。该系统采用"侦探式"多轮推理,先快速扫描全视频获得概览,再有针对性地深入分析关键片段。通过两阶段训练和认知一致性验证,FrameThinker在多个视频理解基准测试中准确率平均提升10.4%,计算效率提高20倍以上,为AI视频理解领域带来突破性进展。
机器人可执行多种任务,但每个动作都需要专门训练,难以适应现实场景。Mbodi开发了云边混合计算系统,利用多个AI智能体协作,帮助机器人更快学习任务。用户可用自然语言下达指令,系统将任务分解为子任务并快速训练机器人。该公司入选TechCrunch Disrupt 2025创业大赛20强,目前专注于拣选包装领域,正与财富100强企业合作概念验证项目。
复旦大学团队创建MedQ-Bench基准,首次系统评估AI模型医学影像质量评估能力。研究覆盖五大成像模式,设计感知-推理双层评估体系,意外发现医学专用AI表现不如通用AI。结果显示最佳AI模型准确率仅68.97%,远低于人类专家82.50%,揭示了AI在医学影像质控应用中的现实挑战和改进方向。