Cohere for AI(AI 创业公司 Cohere 的非营利研究实验室)本周发布了一个多模态"开放"AI 模型 Aya Vision,实验室称其为同类最佳。
Aya Vision 可以执行图像说明写作、图片问答、文本翻译,以及在 23 种主要语言中生成摘要等任务。Cohere 还通过 WhatsApp 免费提供 Aya Vision 服务,称这是"让技术突破成果惠及全球研究人员的重要一步"。
"尽管 AI 取得了重大进展,但在不同语言间模型表现的差距仍然很大——这种差距在涉及文本和图像的多模态任务中更为明显," Cohere 在博客文章中写道。"Aya Vision 旨在明确帮助缩小这一差距。"
Aya Vision 有两个版本:Aya Vision 32B 和 Aya Vision 8B。Cohere 表示,其中更为复杂的 Aya Vision 32B 开创了"新境界",在某些视觉理解基准测试中的表现超过了 Meta 的 Llama-3.2 90B Vision 等两倍于其规模的模型。同时,根据 Cohere 的说法,Aya Vision 8B 在某些评估中的表现优于规模是其 10 倍的模型。
这两个模型都可以在 AI 开发平台 Hugging Face 上获取,采用创用 CC 4.0 许可证并附带 Cohere 的可接受使用附录。它们不能用于商业应用。
Cohere 表示,Aya Vision 使用"多样化"的英语数据集进行训练,实验室将这些数据集翻译并用于创建合成标注。标注(也称为标签)在训练过程中帮助模型理解和解释数据。例如,训练图像识别模型的标注可能是对物体的标记或指代图像中每个人、地点或物体的说明。
根据 Cohere 的说法,使用合成标注(即由 AI 生成的标注)训练 Aya Vision 使实验室能够在使用更少资源的同时实现具有竞争力的性能。
"这展示了我们对效率的关注,以及用更少的计算资源做更多事情的能力," Cohere 在其博客中写道。"这也使我们能够为通常计算资源有限的研究社区提供更大的支持。"
除了 Aya Vision,Cohere 还发布了一个新的基准测试套件 AyaVisionBench,旨在测试模型在"视觉-语言"任务方面的能力,如识别两张图片之间的差异和将截图转换为代码。
AI 行业正处于所谓的"评估危机"之中,这是由于流行的基准测试给出的综合评分与大多数 AI 用户关心的任务熟练程度的相关性较差。Cohere 认为 AyaVisionBench 是解决这一问题的一步,提供了一个"广泛且具有挑战性"的框架来评估模型的跨语言和多模态理解能力。
希望事实确实如此。
"该数据集作为一个强大的基准,用于评估多语言和真实场景中的视觉-语言模型," Cohere 研究人员在 Hugging Face 上的帖子中写道。"我们向研究社区开放这个评估集,以推进多语言多模态评估的发展。"
好文章,需要你的鼓励
OpenAI推出ChatGPT Images新版本GPT Image 1.5,承诺更好的指令遵循、更精确的编辑功能和高达4倍的图像生成速度。该模型面向所有ChatGPT用户和API开放。这是OpenAI在CEO奥特曼宣布"红色警报"后与谷歌Gemini竞争的最新升级。新模型提供后期制作功能,支持更精细的编辑控制,能在编辑过程中保持面部相似度、光照、构图和色调的视觉一致性,解决了传统AI图像工具迭代编辑时缺乏一致性的问题。
艾伦人工智能研究所开发的olmOCR 2通过创新的单元测试训练方法,将文档识别准确率提升至82.4%,在处理复杂数学公式、表格和多栏布局方面表现卓越。该系统采用强化学习和合成数据生成技术,实现了完全开源,为全球研究者提供了先进的OCR解决方案,推动了AI技术民主化发展。
Zoom推出AI Companion 3.0,采用联邦AI架构结合自研模型与OpenAI、Anthropic等第三方大语言模型。新版本具备智能工作流、对话式工作界面等功能,可将会议对话转化为洞察、进度跟踪和文档内容。系统支持加密传输,不使用客户内容训练模型。用户可通过ai.zoom.us访问,或以每月10美元独立购买。
苹果公司发布了包含40万张图片修改案例的AI训练数据集Pico-Banana-400K,涵盖35种修图操作类型。该数据集采用严格质量控制,包含成功失败案例对比和多轮修图场景。研究显示AI在全局修改方面表现优秀,但精细操作仍有挑战。这为AI修图技术发展奠定基础,未来将让修图软件更智能易用。