随着企业争相用 AI "代理"取代人类,编程助手 Cursor 可能让我们提前看到了 AI 机器人在工作中可能展现的态度。
据报道,Cursor 告诉一位名为"janswist"的用户,他应该自己编写代码,而不是依赖 Cursor 帮他完成。
janswist 表示,在他花了一个小时用这个工具"划水"编程后,Cursor 告诉他:"我不能为你生成代码,因为那样就等于替你完成工作...你应该自己开发逻辑。这样可以确保你理解系统并能够正确维护它。"
于是 janswist 在公司的产品论坛上提交了一个错误报告,标题为"Cursor 告诉我应该学习编程而不是让它生成代码",并附上了截图。这个错误报告很快在 Hacker News 上走红,并被 Ars Technica 报道。
janswist 推测他可能触及了 750-800 行代码的硬性限制,尽管其他用户回复说 Cursor 为他们写过更多代码。一位评论者建议 janswist 应该使用 Cursor 的"代理"集成功能,这对较大的编程项目更有效。Anysphere 未能联系到进行评论。
但是,Hacker News 上的用户指出,Cursor 的拒绝态度听起来很像新手程序员在编程论坛 Stack Overflow 上提问时得到的回复。这表明如果 Cursor 是在该网站上训练的,它可能不仅学到了编程技巧,还学到了人类的嘲讽态度。
好文章,需要你的鼓励
OpenAI CEO描绘了AI温和变革人类生活的愿景,但现实可能更复杂。AI发展将带来真正收益,但也会造成社会错位。随着AI系统日益影响知识获取和信念形成,共同认知基础面临分裂风险。个性化算法加剧信息茧房,民主对话变得困难。我们需要学会在认知群岛化的新地形中智慧生存,建立基于共同责任而非意识形态纯洁性的社区。
杜克大学等机构研究团队通过三种互补方法分析了大语言模型推理过程,发现存在"思维锚点"现象——某些关键句子对整个推理过程具有决定性影响。研究表明,计划生成和错误检查等高层次句子比具体计算步骤更重要,推理模型还进化出专门的注意力机制来跟踪这些关键节点。该发现为AI可解释性和安全性研究提供了新工具和视角。
传统数据中心基础设施虽然对企业至关重要,但也是预算和房地产的重大负担。模块化数据中心正成为强有力的替代方案,解决企业面临的运营、财务和环境复杂性问题。这种模块化方法在印度日益流行,有助于解决环境问题、满足人工智能的电力需求、降低成本并支持新一代分布式应用。相比传统建设需要数年时间,工厂预制的模块化数据中心基础设施可在数周内部署完成。
法国索邦大学团队开发出智能医学文献管理系统Biomed-Enriched,通过AI自动从PubMed数据库中识别和提取高质量临床案例及教育内容。该系统采用两步注释策略,先用大型AI模型评估40万段落质量,再训练小型模型处理全库1.33亿段落。实验显示该方法仅用三分之一训练数据即可达到传统方法效果,为医学AI发展提供了高效可持续的解决方案。