初创公司 Imandra Inc. 表示,通过推出一个全新的自动推理系统 CodeLogician,他们将人工智能驱动的代码补全技术提升到了一个新的水平。
与其他专门用于代码补全任务的大语言模型(如 GitHub Inc. 的 Copilot)不同,CodeLogician 据称基于一个称为"神经符号 AI"的新概念,这使它能够对生成的代码进行推理,大大降低了所谓的"幻觉"或不准确的可能性。
CodeLogician 由 ImandraX 驱动,这是 Imandra Core 推理引擎的最新版本,在金融服务业和政府部门广泛应用于验证、测试和审计关键任务系统,包括国家证券交易所。
通过自动将创建的代码转换为数学模型,CodeLogician 可以利用 ImandraX 引擎更好地理解、分析和验证应用层源代码。它还可以自动生成测试用例来证明代码的准确性。因此,CodeLogician 不仅是一个 AI 编程助手,还是一个验证工具,可以保证其生成代码的准确性,帮助开发者发现任何安全漏洞并证明代码按预期运行。
CodeLogician 使用 LangGraph 框架构建,其初始版本与 Python 编程语言兼容,未来的更新将增加对 Java 和 COBOL 的支持,从而能够帮助转换遗留软件应用。
据 Imandra 表示,CodeLogician 将彻底改变开发者的生产力,消除了手动验证数千行 AI 生成代码的负担。
Imandra 联合创始人兼联合首席执行官 Grant Passmore 表示,现有的生成式 AI 编码工具存在缺陷,因为尽管它们生成了大量看似合理的代码,但无法保证这些代码的准确性。
"这些代码通常会以微妙且危险的方式出错," 他说。"CodeLogician 超越了生成式 AI,使用符号数学推理来确保代码真正按预期运行。"
Imandra 表示,CodeLogician 的核心优势在于 LangGraph 框架,它允许系统迭代优化其底层模型,解释其推理过程并提供高度保证。为此,它依赖于一个称为"状态空间探索"的独特特性,这使它能够通过符号区域分解来全面分析大语言模型的所有可能状态和行为。
这是一种新颖的技术,使其能够理解底层大语言模型在尝试解决问题时的思考过程。这有助于确保大语言模型生成的代码准确性,然后应用智能测试来证明其正确性。
CodeLogician 现已向早期测试者开放,开发者可以注册候补名单以获取访问权限。一旦正式发布,它将通过应用程序编程接口 (API) 提供程序化访问,并在 Microsoft Corp. 的 Visual Studio Code Marketplace 中作为 VS Code 扩展提供。
"比尔·盖茨曾将通用软件开发的形式化方法称为'圣杯'," Imandra 的另一位联合首席执行官 Denis Ignatovich 说。"现在,借助神经符号 AI 的力量和自动推理的突破,我们正在逐步接近实现这一目标 — 将先进的推理工具直接交到工程师手中。"
好文章,需要你的鼓励
OpenAI 本周为 ChatGPT 添加了 AI 图像生成功能,用户可直接在对话中创建图像。由于使用量激增,CEO Sam Altman 表示公司的 GPU "正在融化",不得不临时限制使用频率。新功能支持工作相关图像创建,如信息图表等,但在图像编辑精确度等方面仍存在限制。值得注意的是,大量用户正在使用该功能创作吉卜力动画风格的图像。
Synopsys 近期推出了一系列基于 AMD 最新芯片的硬件辅助验证和虚拟原型设计工具,包括 HAPS-200 原型系统和 ZeBu-200 仿真系统,以及面向 Arm 硬件的 Virtualizer 原生执行套件。这些创新工具显著提升了芯片设计和软件开发的效率,有助于加快产品上市速度,满足当前 AI 时代下快速迭代的需求。
人工智能正在深刻改变企业客户关系管理 (CRM) 的方方面面。从销售自动化、营销内容生成到客服智能化,AI不仅提升了运营效率,还带来了全新的服务模式。特别是自主代理AI (Agentic AI) 的出现,有望在多渠道无缝接管客户服务职能,开创CRM发展新纪元。
数据孤岛长期困扰着组织,影响着人工智能的可靠性。它们导致信息分散、模型训练不完整、洞察力不一致。解决方案包括实施强大的数据治理、促进跨部门协作、采用现代数据集成技术等。克服数据孤岛对于充分发挥AI潜力至关重要。