初创公司 Imandra Inc. 表示,通过推出一个全新的自动推理系统 CodeLogician,他们将人工智能驱动的代码补全技术提升到了一个新的水平。
与其他专门用于代码补全任务的大语言模型(如 GitHub Inc. 的 Copilot)不同,CodeLogician 据称基于一个称为"神经符号 AI"的新概念,这使它能够对生成的代码进行推理,大大降低了所谓的"幻觉"或不准确的可能性。
CodeLogician 由 ImandraX 驱动,这是 Imandra Core 推理引擎的最新版本,在金融服务业和政府部门广泛应用于验证、测试和审计关键任务系统,包括国家证券交易所。
通过自动将创建的代码转换为数学模型,CodeLogician 可以利用 ImandraX 引擎更好地理解、分析和验证应用层源代码。它还可以自动生成测试用例来证明代码的准确性。因此,CodeLogician 不仅是一个 AI 编程助手,还是一个验证工具,可以保证其生成代码的准确性,帮助开发者发现任何安全漏洞并证明代码按预期运行。
CodeLogician 使用 LangGraph 框架构建,其初始版本与 Python 编程语言兼容,未来的更新将增加对 Java 和 COBOL 的支持,从而能够帮助转换遗留软件应用。
据 Imandra 表示,CodeLogician 将彻底改变开发者的生产力,消除了手动验证数千行 AI 生成代码的负担。
Imandra 联合创始人兼联合首席执行官 Grant Passmore 表示,现有的生成式 AI 编码工具存在缺陷,因为尽管它们生成了大量看似合理的代码,但无法保证这些代码的准确性。
"这些代码通常会以微妙且危险的方式出错," 他说。"CodeLogician 超越了生成式 AI,使用符号数学推理来确保代码真正按预期运行。"
Imandra 表示,CodeLogician 的核心优势在于 LangGraph 框架,它允许系统迭代优化其底层模型,解释其推理过程并提供高度保证。为此,它依赖于一个称为"状态空间探索"的独特特性,这使它能够通过符号区域分解来全面分析大语言模型的所有可能状态和行为。
这是一种新颖的技术,使其能够理解底层大语言模型在尝试解决问题时的思考过程。这有助于确保大语言模型生成的代码准确性,然后应用智能测试来证明其正确性。
CodeLogician 现已向早期测试者开放,开发者可以注册候补名单以获取访问权限。一旦正式发布,它将通过应用程序编程接口 (API) 提供程序化访问,并在 Microsoft Corp. 的 Visual Studio Code Marketplace 中作为 VS Code 扩展提供。
"比尔·盖茨曾将通用软件开发的形式化方法称为'圣杯'," Imandra 的另一位联合首席执行官 Denis Ignatovich 说。"现在,借助神经符号 AI 的力量和自动推理的突破,我们正在逐步接近实现这一目标 — 将先进的推理工具直接交到工程师手中。"
好文章,需要你的鼓励
OpenAI和微软宣布签署一项非约束性谅解备忘录,修订双方合作关系。随着两家公司在AI市场竞争客户并寻求新的基础设施合作伙伴,其关系日趋复杂。该协议涉及OpenAI从非营利组织向营利实体的重组计划,需要微软这一最大投资者的批准。双方表示将积极制定最终合同条款,共同致力于为所有人提供最佳AI工具。
中山大学团队针对OpenAI O1等长思考推理模型存在的"长度不和谐"问题,提出了O1-Pruner优化方法。该方法通过长度-和谐奖励机制和强化学习训练,成功将模型推理长度缩短30-40%,同时保持甚至提升准确率,显著降低了推理时间和计算成本,为高效AI推理提供了新的解决方案。
中国科技企业发布了名为R1的人形机器人,直接对标特斯拉的Optimus机器人产品。这款新型机器人代表了中国在人工智能和机器人技术领域的最新突破,展现出与国际巨头竞争的实力。R1机器人的推出标志着全球人形机器人市场竞争进一步加剧。
上海AI实验室研究团队深入调查了12种先进视觉语言模型在自动驾驶场景中的真实表现,发现这些AI系统经常在缺乏真实视觉理解的情况下生成看似合理的驾驶解释。通过DriveBench测试平台的全面评估,研究揭示了现有评估方法的重大缺陷,并为开发更可靠的AI驾驶系统提供了重要指导。