当前业界正在热烈讨论一个重要问题:AI 代理是否会像 90 年代的个人电脑一样,成为企业运营的基础设施?
需要明确的是,业内对 AI 代理的真正含义存在诸多争议,有人认为它正在成为另一个被过度炒作的流行语。Google 产品管理高级总监、前 GitHub 产品副总裁 Ryan Salva 在最近接受 TechCrunch 采访时表示,他开始"讨厌代理这个词",因为"业界过度使用'代理'一词,以至于几乎失去了意义"。
不过,在基础层面上,业界似乎达成共识:与专注于大规模生成文本、图像、视频和音频的生成式 AI 不同,AI 代理旨在采取行动,能够自主决策和执行任务。
那么,AI 代理对全球企业的实际价值究竟有多大?特别是在 AI 发展面临能源消耗、学习效率和数据可靠性等挑战的情况下,这些所谓的 AI 代理是否已经准备好处理我们的商业运作方式?
AI 巨大的能源需求
科技热潮总是令人兴奋,但当热潮褪去时,真正棘手的问题就会浮现。AI 代理也不例外。事实上,AI 代理的广泛部署取决于解决与 AI 相关的日益严重的能源危机。正如我在 Forbes 的多篇文章中提到的,该行业已经在努力应对 GPU 的巨大能源需求,大型科技公司甚至在探索核能来支持 AI 发展。
Informatica 的 CEO Amit Walia 表示:"当前在 GPU 和 AI 基础设施上的大规模资本支出,让人想起过去的工业革命,基础技术重塑了经济。虽然硬件至关重要,但能源效率将成为 AI 应用的决定性因素。"
AI 模型,特别是需要实时决策的模型,需要大量的处理能力。这意味着无法优化 AI 基础设施的公司可能面临不可持续的运营成本。
更智能的学习算法需求
除了 AI 数据中心和能源消耗的基础设施问题外,AI 代理还必须具备超越传统 AI 模型的学习和适应能力。
幸运的是,强化学习正在成为这方面的关键推动力。根据 Walia 的说法,强化学习允许 AI 代理随时间改进其行为,使用真实和合成数据来模拟不同场景。
Interface.ai 的 CEO Srinivas Njay 也认同这一观点,指出强化学习 (RL) 对于执行复杂任务的 AI 代理来说是不可或缺的。
然而,虽然强化学习能够使 AI 动态改进决策,但它并非万能良药。强化学习有多个限制,包括但不限于高昂的数据和计算成本、模型决策解释性不足,以及迁移学习能力较差。
数据挑战
数据仍然是 AI 性能的基石,但同时也是 AI 代理最大的瓶颈。如果没有高质量的领域特定数据,AI 代理就无法在医疗保健、金融和客户服务等特定行业环境中有效运作。
现实检查
随着泡沫与现实的分离,在这股热潮中,现在变得更加明显的是,大多数企业还没有准备好将决策完全交给 AI 代理 - 尤其是在涉及客户关系、金融交易或战略规划等高风险场景中。
选择战略而非炒作
我们正处于可能是一场漫长变革的开始,类似于企业软件和云计算的兴起。虽然 AI 代理无疑会变得更加强大,但企业必须首先关注基础:确保数据准备就绪、提高员工的 AI 素养,并以推动可衡量的生产力提升的方式整合 AI。
坦率地说,目前还不清楚 AI 代理真正改变商业运营的核心要素何时才能就位,或者这需要多长时间。但在此之前,专注于战略性 AI 部署而不是追逐炒作的公司将是真正获益的企业。
好文章,需要你的鼓励
英特尔第三季度财报超华尔街预期,净收入达41亿美元。公司通过裁员等成本削减措施及软银、英伟达和美国政府的大额投资实现复苏。第三季度资产负债表增加200亿美元,营收增长至137亿美元。尽管财务表现强劲,但代工业务的未来发展策略仍不明朗,该业务一直表现不佳且面临政府投资条件限制。
美国认知科学研究院团队首次成功将进化策略扩展到数十亿参数的大语言模型微调,在多项测试中全面超越传统强化学习方法。该技术仅需20%的训练样本就能达到同等效果,且表现更稳定,为AI训练开辟了全新路径。
微软发布新版Copilot人工智能助手,支持最多32人同时参与聊天会话的Groups功能,并新增连接器可访问OneDrive、Outlook、Gmail等多项服务。助手记忆功能得到增强,可保存用户信息供未来使用。界面新增名为Mico的AI角色,并提供"真实对话"模式生成更机智回应。医疗研究功能也得到改进,可基于哈佛健康等可靠来源提供答案。同时推出内置于Edge浏览器的Copilot Actions功能,可自动执行退订邮件、预订餐厅等任务。
纽约大学等机构联合开发的ThermalGen系统能够将普通彩色照片智能转换为对应的热成像图片,解决了热成像数据稀缺昂贵的难题。该系统采用创新的流匹配生成模型和风格解耦机制,能适应从卫星到地面的多种拍摄场景,在各类测试中表现优异。研究团队还贡献了三个大规模新数据集,并计划开源全部技术资源,为搜救、建筑检测、自动驾驶等领域提供强有力的技术支撑。