OpenAI 的 AI 推理研究主管 Noam Brown 表示,如果研究人员当时"掌握正确的方法"和算法,像 OpenAI 的 o1 这样的"推理型" AI 模型本可以提前 20 年出现。
Brown 在周三圣何塞举行的 Nvidia GTC 会议的一个专题讨论会上表示:"这个研究方向被忽视是有多方面原因的。在我的研究过程中,我注意到有些东西被遗漏了。人类在面对困难情况时会花大量时间思考后再行动。这种方式或许在 AI 领域会非常有用。"
Brown 是 o1 AI 模型的主要设计者之一,该模型采用了一种称为测试时推理的技术来在回应查询前进行"思考"。测试时推理涉及对运行中的模型施加额外的计算来驱动一种"推理"形式。总的来说,所谓的推理模型在数学和科学等领域比传统模型更准确、更可靠。
不过,Brown 强调,预训练 —— 即在越来越大的数据集上训练越来越大的模型 —— 并非"已经过时"。根据 Brown 的说法,包括 OpenAI 在内的 AI 实验室曾经将大部分精力投入到扩大预训练规模上。现在,他们在预训练和测试时推理之间分配时间,Brown 将这两种方法描述为互补的。
在讨论会上,有人问 Brown,鉴于学术机构普遍缺乏计算资源,学术界是否还能期望进行与 OpenAI 这样的 AI 实验室同等规模的实验。他承认近年来随着模型变得更加计算密集,这确实变得更具挑战性,但学者们可以通过探索需要较少计算资源的领域来产生影响,比如模型架构设计。
Brown 说:"前沿实验室和学术界之间存在合作机会。前沿实验室确实在关注学术论文,并认真思考,好,如果这个方法进一步扩大规模,它是否会非常有效。如果论文中有令人信服的论据,你知道,我们会在这些实验室中进行研究。"
Brown 的这些评论出现在特朗普政府大幅削减科研拨款的时期。包括诺贝尔奖获得者 Geoffrey Hinton 在内的 AI 专家们批评了这些削减,称这可能会威胁到国内外的 AI 研究工作。
Brown 指出 AI 基准测试是学术界可以产生重大影响的一个领域。他说:"AI 基准测试的现状很糟糕,而做好这项工作并不需要大量计算资源。"
正如我们之前所写的,当今流行的 AI 基准测试往往倾向于测试深奥的知识,且其得分与大多数人关心的任务熟练程度的相关性较低。这导致人们对模型的能力和进步产生了广泛的困惑。
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。