Nvidia 于周四宣布与电力行业研发机构 EPRI 合作,利用 AI 解决电网面临的问题。颇具讽刺意味的是,这些问题很大程度上是由 AI 本身带来的用电需求增长所导致的。
开放电力 AI 联盟 (Open Power AI Consortium) 包含多家电力公司和科技企业,该联盟表示将使用领域特定的 AI 模型来设计新的解决方案,以应对电力行业在未来几年预计将面临的问题。这些模型将开源并向学术界和产业界的研究人员开放。
随着 AI 增加了对计算能力的需求,美国及其他地区的数据中心面临着电力需求激增的问题。根据国际能源署的数据,未来几年电力需求预计每年增长 4%,几乎是 2023 年数据的两倍。
除了 Nvidia 和 EPRI 外,该联盟还包括 PG&E、Con Edison、Constellation Energy、Duke Energy、田纳西河谷管理局以及 NEOM 的能源和水务公司 ENOWA。在科技领域,Microsoft 和 Oracle 也都是成员。
为了在这一趋势中保持领先,科技公司们一直在竞相确保发电容量,因为电力已经从简单的成本项目转变为竞争优势。
在过去一年左右的时间里,科技公司持续签订新合同。这些合同主要集中在可再生能源项目上,主要是由于太阳能的低成本、模块化特性以及快速部署能力。
例如,Microsoft 最近在其可观的可再生能源组合中新增了 475 兆瓦的太阳能发电量。去年,它成为 Acadia 运营的一个 90 亿美元可再生能源开发项目的主要投资者,而在此之前,它表示正与 Brookfield 资产管理公司合作,计划在美国和欧洲部署 10.5 吉瓦的可再生能源,这些项目预计将在 2030 年前投入使用。
虽然新的电力来源可能是解决电力短缺最明显的答案,但这并不是唯一的解决方案。
最近的一项研究发现,通过在电网用电高峰期间削减用电量,包括将非时间敏感的任务转移到低需求期间,美国可以释放额外 76 吉瓦的容量。这个数字并不小,约占美国峰值需求的 10%。
这类解决方案很可能是这个新联盟将要探索的方向之一。
好文章,需要你的鼓励
新加坡国立大学研究人员开发出名为AiSee的可穿戴辅助设备,利用Meta的Llama模型帮助视障人士"看见"周围世界。该设备采用耳机形态,配备摄像头作为AI伴侣处理视觉信息。通过集成大语言模型,设备从简单物体识别升级为对话助手,用户可进行追问。设备运行代理AI框架,使用量化技术将Llama模型压缩至10-30亿参数在安卓设备上高效运行,支持离线处理敏感文档,保护用户隐私。
阿里达摩院联合浙江大学推出VideoRefer套件,这是首个能够精确理解视频中特定物体的AI系统。该系统不仅能识别整体场景,更能针对用户指定的任何物体进行详细分析和跨时间追踪。研究团队构建了包含70万样本的高质量数据集VideoRefer-700K,并设计了全面的评估体系VideoRefer-Bench。实验显示该技术在专业视频理解任务中显著超越现有方法,在安防监控、自动驾驶、视频编辑等领域具有广阔应用前景。
OpenAI推出新AI模型GPT-5-Codex,能够在无用户协助下完成数小时的编程任务。该模型是GPT-5的改进版本,使用额外编码数据训练。测试显示,GPT-5-Codex可独立工作超过7小时,能自动发现并修复编码错误。在重构基准测试中得分51.3%,比GPT高出17%以上。模型可根据任务难度调整处理时间,简单请求处理速度显著提升。目前已在ChatGPT付费计划中提供。
Sa2VA是由UC默塞德等高校联合开发的突破性AI系统,首次实现图像视频的统一理解与精确分割。通过巧妙融合SAM-2视频分割技术和LLaVA多模态对话能力,Sa2VA能够同时进行自然对话和像素级物体标注。研究团队还构建了包含7万多个复杂视频表达式的Ref-SAV数据集,显著提升了AI在长文本描述和复杂场景下的表现。实验显示,Sa2VA在多个基准测试中达到业界领先水平,为视频编辑、医疗诊断、智能监控等领域带来新的应用可能性。