在当今 AI 承担了大量编程和软件开发工作的情况下,人类是否还需要学习这些计算机编程技能?这个问题困扰着许多正在进行职业选择的人,也困扰着领导者和人才培养者。
我将借助一些资源来回答这个问题,比如我经常收听的 AI Daily Brief 播客,其中 Nathaniel Whittemore 对这个问题进行了深入分析。我也听取了业内多位重要人物对这个核心问题的见解 - 人们是否还应该学习编程?
在此之前,我想谈谈"意境编程"(vibe coding)这个概念 - 即人类勾勒程序的大致框架,而用 AI 来完成细节。意境编程并不意味着你完全脱离编程过程,而是将大量工作实现自动化。
以下是我听到的一些支持继续学习编程语言的主要理由:
批判性思维技能很重要 Steve Jobs 等人对推广编程实践的观点,与职业人士所需要完成的任务密切相关。
这位已故的科技巨头说过:"每个人都应该学习如何编程。它教会你如何思考。"这句话可以说是点睛之笔。
正如 Whittemore 补充说:"在这个世界越来越多被代码主导的时代,编程所培养的特殊思维方式变得更加重要。"
更好的意境编程者 在播客中,Whittemore 提到那些了解如何进行队列排序或编写哈希表的人,可能比其他人更擅长使用 AI 进行编程。
企业环境定位 - 放入情境中 支持人类编程的另一个论据是 - AI 并不了解你业务的所有背景细节。除非你通过 API 连接了某些内容,或输入了大量数据,否则人类仍然比计算机更了解企业活动。因此在某些方面,AI 的能力会受到限制。
人类擅长创新 基本上,尽管 AI 在代码语法、逻辑和推理方面表现出色,但在创造力方面仍有局限性。
我再举一个播客中的例子,Whittemore 谈到计算机和 AI 可能无法创造出新的编程语言。他还引用了 Andre Karpathy 的流行说法"英语是最热门的新编程语言",但表示我们仍然可以利用 Python 和 C 等语言的语法。
调试和修复 该领域的许多专家也指出,人类在帮助调试和修复代码故障方面可以发挥重要作用。Whittemore 用他使用 Lovable 工具创建代码库的经历作为例子。他指出,当出现问题时,能够深入其中进行修复是很重要的。这是人类参与编程过程的另一个原因。
理解就业市场 在列举了这些支持社区编程的论据之后,让我们来谈谈业界是如何看待这个问题的。
在播客后面的内容中,Whittemore 谈到高级开发人员可能会使用 AI 来替代初级开发人员,可能不会再有初级开发人员的岗位了。那么,如果人们无法获得初级开发人员的工作,是否就应该停止学习编程呢?他说,这样想就是没有看到全局。
他说:"现在为了获得初级开发人员的工作而学习编程似乎有点疯狂。但另一方面,我认为现在没有什么比学习这种新的意境编程范式更有价值的了。"
他呼吁不要用传统方式学习,而是要用不同的方式学习,将你的编程知识与对现代世界运作方式的理解结合起来 - 学会如何创造,如何利用触手可及的创造力推动进步。
我就不说一些著名企业家的预测了,比如 Dario Amodei 预测 AI 将很快承担 90% 的编程工作,或者 Sundar Pichai 说 Google 25% 的代码库依赖于 AI。Whittemore 列举了一些支持和反对 AI 承担更大比例编程责任的论据,你可以在音频中找到这些内容。
回到 Arkham Whittemore 以一个巧妙的文学运动参考结束了那期播客,并将其与 AI 结合起来,这并非第一次。不久前,我查阅了 AI 社区中使用的"shoggoth"这个词,发现这是洛夫克拉夫特作品中的一个术语,在 AI 领域指的是类似于无定形团块的东西。
Whittemore 谈到他如何使用 AI 生成了一个类似于经典游戏《俄勒冈之路》的游戏,这个游戏曾是 X 世代在学校图书馆电脑上玩的黑白棒图游戏。他说他采用了这个模型,并将其应用到洛夫克拉夫特的世界中,这为 AI 生成的游戏开发提供了一个有趣的视角。
他显然还开发了新的《万智牌》资源集。所有这些都展示了这些工具如何助力更大的人类创造力。
Whittemore 说:"不要告诉我们,要展示给我们看。"
所以结论就是 - 即使 AI 可以自己完成大量工作,仍然有几个重要原因支持我们去了解现代编程语言的语法和使用方法。
好文章,需要你的鼓励
Genspark推出超级智能体,将"氛围编程"概念扩展至企业工作流程,实现"氛围工作"模式。该系统采用9个大语言模型的专家混合架构,配备80多种工具和10多个数据集,通过规划-执行-观察-回溯循环运行。系统能自主处理复杂业务任务,甚至代替用户拨打电话。45天内实现3600万美元年收入,展现了自主智能体平台的商业可行性,挑战传统企业AI架构理念。
ByteDance智能创作实验室发布的Phantom-Data是首个大规模跨情境主体一致性视频生成数据集,包含约100万个身份一致配对样本。该数据集通过创新的三阶段构建管道,从5300万视频和30亿图像中精选高质量跨场景配对,有效解决AI视频生成中的"复制粘贴"问题,显著提升文本遵循能力和视觉质量。
医疗保健已成为AI应用的热点领域,在疾病诊断、康复监测和新药开发方面证明了其价值。然而,行业仍面临临床人员短缺、人口老龄化等挑战。AI智能体作为下一波AI变革浪潮,相比现有AI工具,能够执行更复杂的任务并减少人工干预。它们不仅能被动提供信息,还能主动采取行动,如自动分诊调度、辅助临床决策、远程患者监护等,有望在十年内彻底改变医疗服务的提供、管理和体验方式。
普林斯顿大学研究团队开发了ReasonFlux-PRM,这是首个能深度理解AI复杂思维过程的评分系统。不同于传统只看最终答案的评估方法,新系统能评判AI思考轨迹的每个步骤质量,在数学和科学推理任务上实现了平均4.5%-12.1%的性能提升,为AI教育和训练提供了突破性的解决方案。