Retym Inc.,一家专注于云计算和人工智能数据中心连接半导体技术的公司,今日宣布正式成立,同时获得由 Spark Capital 领投的 7500 万美元 D 轮融资。
现有投资方 Kleiner Perkins、Mayfield 和 Fidelity Investments 也参与了本轮融资。至此,该初创公司的总融资额超过 1.8 亿美元。
Retym (发音为"re-time") 专注于为云数据中心和 AI 基础设施开发可编程相干数字信号处理 (DSP) 解决方案。这项半导体技术用于实现数据中心之间以及数据中心内部的高速数据传输。
联合创始人兼首席执行官 Sachin Gandhi 在接受 SiliconANGLE 采访时表示,随着 AI 工作负载规模和复杂性的不断增长,对数据连接速度和效率的需求也在不断提升。
当今的数据中心包含成千上万或数百万个图形处理单元,它们被分成集群和机架,全部通过后端网络连接。这些设备进而连接到光学模块,这些模块通常用于连接建筑物或数据中心之间的较长距离。
Retym 的 DSP 半导体技术被集成在这些光学模块中,这些模块不仅能够实现信号的远距离传输,还能提供更快的速度,使其同样适用于数据中心内部。
"实际上正在发生的是相干技术的转变," Gandhi 说。"它不仅存在于数据中心之间,随着速度的提升,也在向数据中心内部迁移。我们正在构建核心技术,DSP 将瞄准下一代 AI 基础设施和云连接的演进。"
Gandhi 解释说,随着 AI 模型训练和推理需求的不断发展,"数据中心内部"和"数据中心互连"之间的界限开始模糊。根据市场研究公司 Dell'Oro Group 的数据,到本十年末,全球数据中心计算和网络支出预计将超过 1 万亿美元,这将使光网络和 DSP 解决方案成为 AI 云基础设施的首选。
"数据传输总是存在瓶颈," Gandhi 说。"为了避免瓶颈,我们在基础设施上投入大量资金。我们将速度从 400 Gb/s 提升到 800 Gb/s,从 800 Gb/s 提升到 1.6 Tb/s。这种速度提升过去每四年发生一次,现在每两年就会发生一次。"
Gandhi 表示,他相信 Retym 选择在这个时机推出产品是正确的,因为随着压力的增加,公司可以抓住 AI 基础设施市场对数据中心内部和之间速度和效率的需求。
研究公司 LightCounting 的创始人兼首席执行官 Vlad Kozlov 表示:"随着数据量和性能需求的持续增长,相干光学技术和驱动它们的 DSP 对于 AI 驱动的数据中心变得越来越重要。这个市场的持续发展凸显了对创新和高效解决方案的需求。"
借助新一轮融资,Gandhi 表示 Retym 将推进其相干 DSP 的生产工作,并计划在年底前将产品推向市场。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。