当 OpenAI 在 12 月发布其 o3 "推理"AI 模型时,该公司与设计用于测试高性能 AI 的 ARC-AGI 基准测试的创建者合作,展示了 o3 的能力。几个月后,这些结果被修正,现在看起来比最初的结果略显逊色。
上周,负责维护和管理 ARC-AGI 的 Arc Prize Foundation 更新了 o3 的近似计算成本。该组织最初估计,他们测试的表现最好的 o3 配置版本 o3 high,解决单个 ARC-AGI 问题的成本约为 3,000 美元。现在 Arc Prize Foundation 认为这个成本要高得多 - 可能每个任务约 30,000 美元。
这次修正值得注意,因为它说明了当今最先进的 AI 模型在某些任务上可能会产生多么高的费用,至少在早期阶段是这样。OpenAI 尚未对 o3 定价 - 甚至还没有发布它。但 Arc Prize Foundation 认为 OpenAI 的 o1-pro 模型定价是一个合理的参考。
需要说明的是,o1-pro 是 OpenAI 迄今为止最昂贵的模型。
Arc Prize Foundation 的联合创始人 Mike Knoop 告诉 TechCrunch:"我们认为 o1-pro 是更接近 o3 真实成本的参考...这是由于测试时使用的计算量造成的。但这仍然只是一个参考,我们在排行榜上将 o3 标记为预览状态,以反映在官方定价公布之前的不确定性。"
考虑到该模型据报道使用的计算资源量,o3 high 的高价格并非不可思议。根据 Arc Prize Foundation 的数据,在处理 ARC-AGI 时,o3 high 使用的计算量是计算量最低的配置 o3 low 的 172 倍。
此外,关于 OpenAI 考虑为企业客户推出昂贵计划的传言已经流传了一段时间。3 月初,The Information 报道称,该公司可能计划对专门的 AI "代理"(如软件开发者代理)收取高达每月 20,000 美元的费用。
有人可能会说,即使是 OpenAI 最昂贵的模型,其成本也远低于典型的人类承包商或员工的费用。但正如 AI 研究员 Toby Ord 在 X 平台上指出的那样,这些模型可能并不那么高效。例如,o3 high 在 ARC-AGI 中需要对每个任务尝试 1,024 次才能获得最佳分数。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。