当 OpenAI 在 12 月发布其 o3 "推理"AI 模型时,该公司与设计用于测试高性能 AI 的 ARC-AGI 基准测试的创建者合作,展示了 o3 的能力。几个月后,这些结果被修正,现在看起来比最初的结果略显逊色。
上周,负责维护和管理 ARC-AGI 的 Arc Prize Foundation 更新了 o3 的近似计算成本。该组织最初估计,他们测试的表现最好的 o3 配置版本 o3 high,解决单个 ARC-AGI 问题的成本约为 3,000 美元。现在 Arc Prize Foundation 认为这个成本要高得多 - 可能每个任务约 30,000 美元。
这次修正值得注意,因为它说明了当今最先进的 AI 模型在某些任务上可能会产生多么高的费用,至少在早期阶段是这样。OpenAI 尚未对 o3 定价 - 甚至还没有发布它。但 Arc Prize Foundation 认为 OpenAI 的 o1-pro 模型定价是一个合理的参考。
需要说明的是,o1-pro 是 OpenAI 迄今为止最昂贵的模型。
Arc Prize Foundation 的联合创始人 Mike Knoop 告诉 TechCrunch:"我们认为 o1-pro 是更接近 o3 真实成本的参考...这是由于测试时使用的计算量造成的。但这仍然只是一个参考,我们在排行榜上将 o3 标记为预览状态,以反映在官方定价公布之前的不确定性。"
考虑到该模型据报道使用的计算资源量,o3 high 的高价格并非不可思议。根据 Arc Prize Foundation 的数据,在处理 ARC-AGI 时,o3 high 使用的计算量是计算量最低的配置 o3 low 的 172 倍。
此外,关于 OpenAI 考虑为企业客户推出昂贵计划的传言已经流传了一段时间。3 月初,The Information 报道称,该公司可能计划对专门的 AI "代理"(如软件开发者代理)收取高达每月 20,000 美元的费用。
有人可能会说,即使是 OpenAI 最昂贵的模型,其成本也远低于典型的人类承包商或员工的费用。但正如 AI 研究员 Toby Ord 在 X 平台上指出的那样,这些模型可能并不那么高效。例如,o3 high 在 ARC-AGI 中需要对每个任务尝试 1,024 次才能获得最佳分数。
好文章,需要你的鼓励
zip2zip是一项创新技术,通过引入动态自适应词汇表,让大语言模型在推理时能够自动组合常用词组,显著提高处理效率。由EPFL等机构研究团队开发的这一方法,基于LZW压缩算法,允许模型即时创建和使用"超级tokens",将输入和输出序列长度减少20-60%,大幅提升推理速度。实验表明,现有模型只需10个GPU小时的微调即可适配此框架,在保持基本性能的同时显著降低计算成本和响应时间,特别适用于专业领域和多语言场景。
这项研究创新性地利用大语言模型(LLM)代替人类标注者,创建了PARADEHATE数据集,用于仇恨言论的无毒化转换。研究团队首先验证LLM在无毒化任务中表现可与人类媲美,随后构建了包含8000多对仇恨/非仇恨文本的平行数据集。评估显示,在PARADEHATE上微调的模型如BART在风格准确性、内容保留和流畅性方面表现优异,证明LLM生成的数据可作为人工标注的高效替代方案,为创建更安全、更具包容性的在线环境提供了新途径。
这项研究由中国科学技术大学的研究团队提出了Pro3D-Editor,一种新型3D编辑框架,通过"渐进式视角"范式解决了现有3D编辑方法中的视角不一致问题。传统方法要么随机选择视角迭代编辑,要么同时编辑多个固定视角,都忽视了不同编辑任务对应不同的"编辑显著性视角"。Pro3D-Editor包含三个核心模块:主视角采样器自动选择最适合编辑的视角,关键视角渲染器通过创新的MoVE-LoRA技术将编辑信息传递到其他视角,全视角精修器修复并优化最终3D模型。实验证明该方法在编辑质量和准确性方面显著优于现有技术。
这项研究提出了ComposeAnything,一个无需重新训练的框架,可显著提升AI图像生成模型处理复杂空间关系的能力。该技术由INRIA、巴黎高师和CNRS的研究团队开发,通过三个创新步骤工作:首先利用大型语言模型创建包含深度信息的2.5D语义布局,然后生成粗略的场景合成图作为先验指导,最后通过物体先验强化和空间控制去噪引导扩散过程。在T2I-CompBench和NSR-1K基准测试中,该方法远超现有技术,特别是在处理复杂空间关系和多物体场景时表现卓越,为AI辅助创意设计开辟新可能。