一家名为 Deep Cogito 的新公司近期揭开面纱,推出了一系列可以在"推理"和非推理模式之间切换的开放 AI 模型。
像 OpenAI 的 o1 这样的推理模型在数学和物理等领域展现出巨大潜力,这要归功于它们能够通过逐步解决复杂问题来进行自我验证的能力。然而,这种推理能力是有代价的:更高的计算成本和延迟。这就是为什么像 Anthropic 这样的实验室正在追求"混合"模型架构,将推理组件与标准的非推理元素相结合。混合模型可以快速回答简单问题,同时在处理更具挑战性的问题时投入更多时间思考。
Deep Cogito 的所有模型(称为 Cogito 1)都是混合模型。该公司声称,这些模型的性能优于同等规模的最佳开放模型,包括来自 Meta 和中国 AI 初创公司 DeepSeek 的模型。
该公司在博客文章中解释道:"每个模型都可以直接回答问题,或在回答前进行自我反思(类似推理模型)。所有这些都是由一个小团队在大约 75 天内开发完成的。"
Cogito 1 模型的参数规模从 30 亿到 700 亿不等,该公司表示,在未来几周和几个月内,将会推出参数规模达到 6710 亿的模型。参数数量大致对应于模型的问题解决能力,通常参数越多越好。
需要说明的是,Cogito 1 并非从零开始开发。Deep Cogito 是在 Meta 的开源 Llama 和阿里巴巴的 Qwen 模型基础上构建的。该公司表示,他们应用了新颖的训练方法来提升基础模型的性能,并实现可切换的推理能力。
根据 Cogito 的内部基准测试结果,最大的 Cogito 1 模型——启用推理功能的 Cogito 70B,在某些数学和语言评估中的表现优于 DeepSeek 的 R1 推理模型。在禁用推理功能的情况下,Cogito 70B 在通用 AI 测试 LiveBench 上的表现也超过了 Meta 最近发布的 Llama 4 Scout 模型。
所有 Cogito 1 模型都可以通过 Fireworks AI 和 Together AI 这两家云服务提供商的 API 下载或使用。
"目前,我们仍处于扩展曲线的早期阶段,仅使用了传统大语言模型后期/持续训练所需计算资源的一小部分,"Cogito 在其博客文章中写道。"展望未来,我们正在研究互补的后期训练方法来实现自我提升。"
根据加利福尼亚州的文件显示,总部位于旧金山的 Deep Cogito 成立于 2024 年 6 月。该公司的 LinkedIn 页面列出了两位联合创始人:Drishan Arora 和 Dhruv Malhotra。Malhotra 此前是 Google AI 实验室 DeepMind 的产品经理,负责生成式搜索技术。Arora 曾是 Google 的高级软件工程师。
根据 PitchBook 的信息,Deep Cogito 的投资方包括 South Park Commons,该公司雄心勃勃地致力于构建"通用超级智能"。公司创始人将这个术语理解为能够比大多数人更好地完成任务,并"发现我们尚未想象到的全新能力"的 AI。
好文章,需要你的鼓励
Aqara Hub M200是进入Aqara生态系统的新入口,作为支持Matter的Zigbee 3.0中枢,可将传感器、开关、按钮等配件通过Matter共享到HomeKit。相比Hub M3设计更紧凑,支持2.4和5GHz双频Wi-Fi。M200充分利用Zigbee协议的低成本优势,让用户以更实惠的价格构建智能家居,同时享受完整的HomeKit功能。对于HomeKit用户来说,这是一个稳定可靠的桥接方案。
腾讯AI实验室联合港校提出RePlan框架,解决复杂图像编辑中的指令理解和精确定位难题。该方法采用"计划-执行"架构,让视觉语言模型先推理制定区域级编辑计划,再通过创新的注意力机制精确执行。仅用1000个样本训练就超越了大规模数据训练的模型,在新建的IV-Edit基准上表现出色。
LG电视通过系统更新强制安装微软Copilot快捷方式引发争议。虽然LG承诺将允许用户删除该图标,但仍计划在webOS系统中深度整合Copilot功能。三星等厂商也在推进类似AI功能。专家指出,智能电视内置聊天机器人会增加隐私追踪的复杂性,加剧系统臃肿问题。当前智能电视行业正通过用户追踪和广告实现软件盈利,消费者应关注隐私保护问题。
这项由香港科技大学等机构联合完成的研究首次让AI获得了原生的3D空间理解能力。N3D-VLM系统能够像人类一样准确感知物体的立体位置关系,先精确定位物体的3D边界框,再进行空间推理。研究团队还开发了巧妙的数据生成方法,将2D标注转换为278万个3D样本,并构建了全新的N3D-Bench测试基准。实验显示该系统在空间推理任务上准确率超过90%,远超现有方法,为机器人、自动驾驶等领域提供了重要技术突破。