OpenAI 表示,其部署了一套全新的系统,用以监控最新的 AI 推理模型 o3 和 o4-mini ,重点监测与生物及化学威胁相关的输入提示。根据 OpenAI 的安全报告,该系统旨在防止模型提供可能指导他人实施潜在有害攻击的建议。
公司称,o3 和 o4-mini 相较于 OpenAI 之前的模型具有显著的能力提升,因此在不法分子手中可能带来新的风险。根据 OpenAI 的内部基准测试,o3 在回答有关制造特定类型生物威胁的问题上展现出更高技能。正因如此 —— 同时为了降低其他风险 —— OpenAI 创建了这一新的监控系统,公司将其称为 “safety-focused reasoning monitor”。
该监控器经过专门训练以理解 OpenAI 的内容政策,运行在 o3 和 o4-mini 之上。它旨在识别与生物和化学风险相关的输入提示,并指示模型拒绝就这些主题提供建议。
为建立基准,OpenAI 让红队成员花费约 1,000 小时标记 o3 和 o4-mini 中与生物风险相关的“不安全”对话。根据 OpenAI 的说明,在一次模拟安全监控器 “阻断逻辑” 的测试中,这些模型对风险提示拒绝响应的比例达到了 98.7%。
OpenAI 承认,其测试并未考虑到用户在被监控器阻断后可能会尝试新的提示,因此该公司表示将部分依赖人工监控。
据 OpenAI 称,o3 和 o4-mini 在生物风险方面未达到公司定义的 “high risk” 阈值。然而,与 o1 和 GPT-4 相比,OpenAI 表示早期版本的 o3 和 o4-mini 在解答生物武器开发相关问题时表现得更为有帮助。
图表摘自 o3 和 o4-mini 的系统说明卡 ( Screenshot: OpenAI )
根据 OpenAI 最近更新的 Preparedness Framework ,该公司正积极跟踪其模型如何可能使恶意用户更容易开发化学和生物威胁。
OpenAI 越来越依赖自动化系统来降低其模型所带来的风险。例如,为防止 GPT-4o 的原生图像生成器创作儿童性虐待材料 ( CSAM ),OpenAI 表示它采用了类似于为 o3 和 o4-mini 部署的 reasoning monitor。
然而,一些研究人员担心 OpenAI 并未给予安全性足够的重视。该公司的一位红队合作伙伴 Metr 表示,他们用于测试 o3 在欺骗性行为基准测试上的时间相对较少。与此同时,OpenAI 决定不发布其于本周早些时候推出的 GPT-4.1 模型的安全报告。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。