OpenAI 表示,其部署了一套全新的系统,用以监控最新的 AI 推理模型 o3 和 o4-mini ,重点监测与生物及化学威胁相关的输入提示。根据 OpenAI 的安全报告,该系统旨在防止模型提供可能指导他人实施潜在有害攻击的建议。
公司称,o3 和 o4-mini 相较于 OpenAI 之前的模型具有显著的能力提升,因此在不法分子手中可能带来新的风险。根据 OpenAI 的内部基准测试,o3 在回答有关制造特定类型生物威胁的问题上展现出更高技能。正因如此 —— 同时为了降低其他风险 —— OpenAI 创建了这一新的监控系统,公司将其称为 “safety-focused reasoning monitor”。
该监控器经过专门训练以理解 OpenAI 的内容政策,运行在 o3 和 o4-mini 之上。它旨在识别与生物和化学风险相关的输入提示,并指示模型拒绝就这些主题提供建议。
为建立基准,OpenAI 让红队成员花费约 1,000 小时标记 o3 和 o4-mini 中与生物风险相关的“不安全”对话。根据 OpenAI 的说明,在一次模拟安全监控器 “阻断逻辑” 的测试中,这些模型对风险提示拒绝响应的比例达到了 98.7%。
OpenAI 承认,其测试并未考虑到用户在被监控器阻断后可能会尝试新的提示,因此该公司表示将部分依赖人工监控。
据 OpenAI 称,o3 和 o4-mini 在生物风险方面未达到公司定义的 “high risk” 阈值。然而,与 o1 和 GPT-4 相比,OpenAI 表示早期版本的 o3 和 o4-mini 在解答生物武器开发相关问题时表现得更为有帮助。
图表摘自 o3 和 o4-mini 的系统说明卡 ( Screenshot: OpenAI )
根据 OpenAI 最近更新的 Preparedness Framework ,该公司正积极跟踪其模型如何可能使恶意用户更容易开发化学和生物威胁。
OpenAI 越来越依赖自动化系统来降低其模型所带来的风险。例如,为防止 GPT-4o 的原生图像生成器创作儿童性虐待材料 ( CSAM ),OpenAI 表示它采用了类似于为 o3 和 o4-mini 部署的 reasoning monitor。
然而,一些研究人员担心 OpenAI 并未给予安全性足够的重视。该公司的一位红队合作伙伴 Metr 表示,他们用于测试 o3 在欺骗性行为基准测试上的时间相对较少。与此同时,OpenAI 决定不发布其于本周早些时候推出的 GPT-4.1 模型的安全报告。
好文章,需要你的鼓励
本文探讨如何使用生成式AI和大语言模型作为倾听者,帮助用户表达内心想法。许多主流AI如ChatGPT、Claude等被设计成用户的"最佳伙伴",或试图提供心理健康建议,但有时用户只想要一个尊重的倾听者。文章提供了有效的提示词技巧,指导AI保持中性、尊重的态度,专注于倾听和理解,而非给出建议或判断。同时提醒用户注意隐私保护和AI的局限性。
北京大学团队开发出WoW世界模型,这是首个真正理解物理规律的AI系统。通过200万机器人互动数据训练,WoW不仅能生成逼真视频,更能理解重力、碰撞等物理定律。其创新的SOPHIA框架让AI具备自我纠错能力,在物理理解测试中达到80.16%准确率。该技术将推动智能机器人、视频制作等领域发展,为通用人工智能奠定重要基础。
人工通用智能和超级人工智能的出现,可能会创造出一种全新的外星智能形态。传统AI基于人类智能模式构建,但AGI和ASI一旦存在,可能会选择创造完全不同于人类认知方式的新型智能。这种外星人工智能既可能带来突破性进展,如找到癌症治愈方法,也可能存在未知风险。目前尚不确定这种新智能形态是否会超越人类智能,以及我们是否应该追求这一可能改变人类命运的技术突破。
香港大学和蚂蚁集团联合推出PromptCoT 2.0,这是一种让AI自动生成高质量训练题目的创新方法。通过"概念-思路-题目"的三步策略,AI能像老师备课一样先构思解题思路再出题,大幅提升了题目质量和训练效果。实验显示该方法在数学竞赛和编程任务上都取得了显著提升,为解决AI训练数据稀缺问题提供了新思路。