OpenAI 的 o3 AI 模型在一次基准测试中的得分低于公司最初所宣称的水平
OpenAI 与第三方对于 o3 模型的基准测试结果存在差异,这引发了外界对于公司在透明度及模型测试流程上的质疑。
当 OpenAI 在 12 月份推出 o3 模型时,公司宣称该模型在 FrontierMath(一套具有挑战性的数学题集)上能够正确回答略多于四分之一的问题。这个得分显著领先于竞争对手——下一个最佳模型仅能正确解答大约 2% 的 FrontierMath 题目。
OpenAI 首席研究官 Mark Chen 在一次直播中表示:“目前市面上所有产品在 FrontierMath 上的得分都低于 2%,而我们内部观察到,通过采用 o3 模型在激进的测试时计算设置下,我们能够达到超过 25% 的得分。”
然而,事实证明,这个数字很可能只是一个上界,是由一个使用更多计算资源的 o3 版本在测试中获得的,而这并非 OpenAI 上周公开发布的那一版本所具备的计算能力。
负责 FrontierMath 的研究机构 Epoch AI 于周五发布了对 o3 模型进行独立基准测试的结果。Epoch 的测试显示,o3 模型得分大约为 10%,远低于 OpenAI 声称的最高分数。
OpenAI 已经发布了备受期待的推理模型 o3,同时还推出了继 o3-mini 之后更小且成本更低的 o4-mini 模型。
Epoch 在 Twitter 上写道:“我们在数学和科学基准测试集合上对这些新模型进行了评估,结果已在线程中公布! pic.twitter.com/5gbtzkEy1B” (2025 年 4 月 18 日)。
这并不意味着 OpenAI 本质上是在撒谎。公司在 12 月发布的基准测试结果展示了一个下界得分,这个得分与 Epoch 观察到的分数相吻合。Epoch 还指出,其测试设置很可能与 OpenAI 的有所不同,而且其评估使用了更新版本的 FrontierMath。
Epoch 在报告中写道:“我们与 OpenAI 结果之间的差异,可能是因为 OpenAI 使用了一个更强大的内部测试框架,在测试时动用了更多的计算资源,或是因为这些结果是在 FrontierMath 的不同子集上运行得到的(frontiermath-2024-11-26 中的 180 道题与 frontiermath-2025-02-28-private 中的 290 道题相比)。”
根据 ARC Prize Foundation 在 X 上的一篇博文,该组织曾测试过预发布版的 o3 模型,并指出公开版 o3 “是一个经过调优以适用于聊天/产品场景的不同模型”,这一点与 Epoch 的报告相印证。
ARC Prize 在推文中写道:“所有公布的 o3 计算层级都比我们基准测试的版本要小。”一般来说,计算资源更充足的版本预期能获得更好的基准测试得分。
当然,公开发布的 o3 模型未能达到 OpenAI 测试时所宣称的成绩,这一点实际上无关紧要,因为 OpenAI 的 o3-mini-high 和 o4-mini 模型在 FrontierMath 上的表现均优于 o3,并且 OpenAI 计划在未来几周推出性能更强的 o3 变种——o3-pro。
不过,这再次提醒我们在解读 AI 基准测试时不应只停留在表面,尤其当数据来源于一个手握商业服务的公司时。
随着厂商争相运用新模型争取头条新闻和市场关注,基准测试“争议”在 AI 行业中已日渐常见。
今年一月,Epoch 因在 OpenAI 宣布 o3 后才披露其获得的资金支持而受到批评;许多为 FrontierMath 贡献的学者直到公开报道后才得知 OpenAI 的参与。
最近,Elon Musk 的 xAI 被指控发布了误导性的基准测试图表,用以宣传其最新 AI 模型 Grok 3 的表现;而就在本月,Meta 承认曾宣传过某个模型版本的基准测试得分,而该版本与公司提供给开发者使用的版本不同。
好文章,需要你的鼓励
DeepResearchGym是一个创新的开源评估框架,专为深度研究系统设计,旨在解决当前依赖商业搜索API带来的透明度和可重复性挑战。该系统由卡内基梅隆大学研究团队开发,结合了基于ClueWeb22和FineWeb大型网络语料库的可重复搜索API与严格的评估协议。实验表明,使用DeepResearchGym的系统性能与使用商业API相当,且在评估指标间保持一致性。人类评估进一步证实了自动评估协议与人类偏好的一致性,验证了该框架评估深度研究系统的有效性。
这项研究介绍了FinTagging,首个面向大型语言模型的全面财务信息提取与结构化基准测试。不同于传统方法,它将XBRL标记分解为数值识别和概念链接两个子任务,能同时处理文本和表格数据。在零样本测试中,DeepSeek-V3和GPT-4o表现最佳,但在细粒度概念对齐方面仍面临挑战,揭示了当前大语言模型在自动化XBRL标记领域的局限性,为金融AI发展提供了新方向。
这项研究介绍了SweEval,一个新型基准测试,用于评估大型语言模型在企业环境中处理脏话的能力。研究团队从Oracle AI等多家机构的专家创建了一个包含八种语言的测试集,模拟不同语调和上下文的真实场景。实验结果显示,LLM在英语中较少使用脏话,但在印地语等低资源语言中更易受影响。研究还发现较大模型通常表现更好,且多语言模型如Llama系列在处理不当提示方面优于其他模型。这项工作对企业采用AI技术时的安全考量提供了重要参考。
这项研究提出了"VeriFree"——一种不需要验证器的方法,可以增强大型语言模型(LLM)的通用推理能力。传统方法如DeepSeek-R1-Zero需要验证答案正确性,限制了其在数学和编程以外领域的应用。VeriFree巧妙地计算正确答案在模型生成的推理过程后出现的概率,作为评估和训练信号。实验表明,这种方法不仅能匹配甚至超越基于验证器的方法,还大幅降低了计算资源需求,同时消除了"奖励黑客"问题。这一突破将有助于开发出在化学、医疗、法律等广泛领域具有更强推理能力的AI系统。