FutureHouse,一个由 Eric Schmidt 支持的非营利组织,旨在未来十年内打造一位 “AI 科学家”,现已推出其首个重大产品:一个平台和 API,内置 AI 工具,用以支持科学研究工作。
目前有许多初创企业竞相开发面向科学领域的 AI 研究工具,其中一些背后拥有大量风险投资资金的支持。科技巨头似乎也看好 AI 在科学中的应用。今年早些时候,Google 推出了 “AI co-scientist”,这是一款据称能够帮助科学家提出假设并制定实验研究计划的 AI。
OpenAI 和 Anthropic 的 CEO 均表示,AI 工具可以大幅加速科学发现,尤其在医学领域。然而,由于现阶段 AI 的不可靠性,许多研究人员并不认为它在引导科学进程方面特别有用。
FutureHouse 于周四发布了四款 AI 工具:Crow、Falcon、Owl 和 Phoenix。Crow 能搜索科学文献并回答相关问题;Falcon 可以进行更深入的文献搜索,包括科学数据库;Owl 用于查找某一特定领域内的既有研究;而 Phoenix 则利用工具帮助规划化学实验。
FutureHouse 在博客文章中写道:“与其他 AI 不同,FutureHouse 的 AI 可访问大量高质量的开放获取论文及专门的科学工具,它们具备透明的推理过程,并采用多阶段流程对每个信息源进行更深入的考量……通过将这些 AI 串联起来,实现规模化,科学家们可以大大加速科学发现的步伐。”
然而具有讽刺意味的是,FutureHouse 迄今尚未利用其 AI 工具取得任何科学突破或发现全新的成果。
开发 “AI 科学家” 的一大挑战在于需要预见无数个干扰因素。AI 在需要广泛探索、缩小大量可能性清单的场景中可能会派上用场,但目前尚不明确 AI 是否具备那种跳出常规框架、从而实现真正突破性的解决问题能力。
到目前为止,专为科学设计的 AI 系统的成果大多令人失望。2023 年,Google 曾表示借助其名为 GNoME 的 AI 合成了大约 40 种新材料,但外部分析显示,这些材料中没有一项实际上是全新的。
AI 的技术缺陷和风险(例如其容易出现“幻觉”的倾向)也使科学家们对将其用于严肃研究持谨慎态度。即便是设计良好的研究,也可能因表现不佳的 AI 而受到污染,其难以执行高精度工作。
实际上,FutureHouse 也承认其 AI 工具——特别是 Phoenix——可能会出错。
公司在博客文章中写道:“我们现在发布这些工具是为了快速迭代,请在使用过程中提供反馈。”
好文章,需要你的鼓励
美国网络安全和基础设施安全局指示联邦机构修补影响思科ASA 5500-X系列防火墙设备的两个零日漏洞CVE-2025-20362和CVE-2025-20333。这些漏洞可绕过VPN身份验证并获取root访问权限,已被黑客积极利用。攻击与国家支持的ArcaneDoor黑客活动有关,黑客通过漏洞安装bootkit恶意软件并操控只读存储器实现持久化。思科已发布补丁,CISA要求机构清点易受攻击系统并在今日前完成修补。
康考迪亚大学研究团队通过对比混合量子-经典神经网络与传统模型在三个基准数据集上的表现,发现量子增强模型在准确率、训练速度和资源效率方面均显著优于传统方法。研究显示混合模型的优势随数据集复杂度提升而增强,在CIFAR100上准确率提升9.44%,训练速度提升5-12倍,且参数更少。该成果为实用化量子增强人工智能铺平道路。
TimeWave是一款功能全面的计时器应用,超越了苹果自带时钟应用的功能。它支持创建流式计时器,让用户可以设置连续的任务计时,帮助专注工作。应用采用简洁的黑白设计,融入了Liquid Glass元素。内置冥想、番茄工作法、20-20-20护眼等多种计时模式,支持实时活动显示和Siri快捷指令。免费版提供基础功能,高级版需付费订阅。
沙特KAUST大学团队开发了专门针对阿拉伯语的AI模型家族"Hala",通过创新的"翻译再调优"技术路线,将高质量英语指令数据转化为450万规模的阿拉伯语语料库,训练出350M到9B参数的多个模型。在阿拉伯语专项测试中,Hala在同规模模型中表现最佳,证明了语言专门化策略的有效性,为阿拉伯语AI发展和其他语言的专门化模型提供了可复制的技术方案。