两家公司都强调,已签署的合同依然有效,并将这一举动描述为正常的容量管理。微软表示,其财政年度(至 6 月结束)仍计划投入 800 亿美元。AWS 全球数据中心副总裁在 LinkedIn 上写道,“我们近期的扩展计划并未发生任何根本性变化。”
AI 建设确实在进行,但步伐可能正在发生变化。虽然云服务提供商在公开场合坚持扩展计划未变,但最近的租赁暂停暗示幕后正进行更为谨慎的重新调整——这预示着 AI 热潮可能不会以亚马逊和微软预期的那种不懈速度推进。
这种转变的一种解释是单纯的过度投入。根据 CNBC 的报道,上周 UBS 发布的一份报告得出结论,微软此轮撤退可能源于在最初的 AI 热潮期间投入过度。报告称,微软在两年内的租赁资本支出增长了 6.7 倍,目前租赁义务总额约为 1750 亿美元。随着对这项技术实际应用方式和电力需求有了更清晰的认识,微软正在取消那些不再具备即时意义的早期项目。UBS 表示,他们几乎没有发现突发的需求低迷是促使战略调整的主要原因。
AI 生态系统内部的成本压力不断累积。仅在计算能力上,对 OpenAI 最先进模型的一次查询可能就花费高达 1000 美元。尽管 ChatGPT 的高级访问服务每月收费 200 美元,但 OpenAI CEO Sam Altman 在一月份表示,该订阅服务尚未实现盈利。
即便是科技高管也开始承认炒作与实际成果之间存在差距。微软 CEO Satya Nadella 最近坦言,迄今为止,AI 尚未产生多少可衡量的价值。他的言论反映出更广泛的疑虑,即生成式 AI 是否能够带来可持续回报——或基础设施投资是否已远远超前于现实需求。
外部因素正在加剧这一挑战。特朗普总统提出的关税政策使进口设备成本大幅上升的可能性增大,而科技股在更广泛的市场波动中也承受着压力。与此同时,许多地区正面临电网容量的限制,这限制了新增数据中心的能力;各地对大型设施的反对声音也在不断增强,因为社区对不断上升的电力需求、土地使用和水资源消耗表示担忧。
未来 AI 基础设施的规模可能会显著放大这些压力。根据乔治城大学、Epoch AI 与 RAND Corporation 的研究人员近期的一项研究,如果当前趋势持续,到 2030 年,领先的 AI 数据中心每个可能将耗资 2000 亿美元,内含 200 万个 AI 芯片,并需要相当于九座核反应堆的电力。
这一撤退恰逢前所未有的投资热潮。据 Synergy Research Group 表示,目前全球有超过 500 个数据中心设施正处于规划和建设阶段。该机构称,亚马逊、微软和 Google (GOOGL) 现在占据了所有超大规模数据中心容量的 59%。每家公司都承诺将投入数十亿美元于资本支出,主要用于支撑生成式 AI 模型。
与此同时,AI 基础设施支出与 AI 创收之间的差距持续扩大。Sequoia Capital 合伙人 David Cahn 在 2024 年 6 月的一项分析中估计,这一不匹配现已膨胀成一个 6000 亿美元的缺口——而仅在九个月前,这一差距还仅为 2000 亿美元。
目前,云服务提供商仍坚持他们的公开声明:扩展计划保持不变。但那些较为低调的信号——租赁暂停、早期项目取消、成本上升以及快速变化的竞争态势——表明,幕后情况远比表面上看起来更为复杂。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。