Google 的 AI R&D 实验室 DeepMind 表示,他们开发了一种新的 AI 系统,用于处理具有 "machine-gradable"(可由机器评分)解决方案的问题。
DeepMind 表示,在实验中,该系统名为 AlphaEvolve,可帮助优化 Google 用于训练其 AI 模型的一些基础设施。公司表示,他们正在构建与 AlphaEvolve 交互的用户界面,并计划在可能更大范围推广之前,为部分学者推出早期访问计划。
大多数 AI 模型会产生幻觉。由于其概率架构,这些模型有时会自信地编造信息。实际上,新一代 AI 模型(如 OpenAI 的 o3)比其前辈产生更多幻觉,这也反映了该问题的复杂挑战。
AlphaEvolve 引入了一种巧妙的机制以减少幻觉现象:自动评估系统。该系统利用模型生成、评判并综合出一个问题的可能答案池,同时自动评估和打分以判断答案的准确性。
DeepMind 表示,AlphaEvolve 系统的设计目标是供领域专家使用。
AlphaEvolve 并不是第一个采用这种方法的系统。包括几年前 DeepMind 团队在内的研究人员,曾在数学各领域中应用过类似技术。但 DeepMind 声称,AlphaEvolve 所使用的 "state-of-the-art"(最先进)模型——特别是 Gemini 模型——使其相比以前的 AI 系统具有显著更强的能力。
要使用 AlphaEvolve,用户必须向系统输入一个问题,并可选地附上说明、方程、代码片段以及相关文献等详细信息。用户还需要提供一种以公式形式自动评估系统答案的机制。
由于 AlphaEvolve 只能解决其自身能进行评估的问题,该系统仅适用于某些类型的问题——特别是计算机科学和系统优化等领域的问题。另一项主要限制是,AlphaEvolve 只能以算法形式描述解决方案,这使得它对于非数值类问题的适用性较差。
为了对 AlphaEvolve 进行基准测试,DeepMind 让该系统尝试了一组精挑细选的约 50 道数学题,涵盖从几何到组合数学等多个分支。DeepMind 声称,AlphaEvolve 在 75% 的情况下能够“重新发现”这些问题的最佳解答,并在 20% 的案例中找到改进方案。
DeepMind 还将 AlphaEvolve 应用于实际问题,如提高 Google 数据中心的效率及加速模型训练。根据该实验室的数据,AlphaEvolve 生成的一种算法平均可持续回收 Google 全球计算资源的 0.7%。该系统还提出了一项优化措施,将 Google 训练 Gemini 模型的总体时间缩短了 1%。
需要明确的是,AlphaEvolve 并没有带来突破性的发现。在一次实验中,该系统成功找到了优化 Google TPU AI 加速器芯片设计的改进方案——这一问题此前已被其他工具指出。
然而,DeepMind 与许多 AI 实验室一样,主张 AlphaEvolve 能够节省时间,从而释放专家去关注其他更为重要的工作。
好文章,需要你的鼓励
美国网络安全和基础设施安全局指示联邦机构修补影响思科ASA 5500-X系列防火墙设备的两个零日漏洞CVE-2025-20362和CVE-2025-20333。这些漏洞可绕过VPN身份验证并获取root访问权限,已被黑客积极利用。攻击与国家支持的ArcaneDoor黑客活动有关,黑客通过漏洞安装bootkit恶意软件并操控只读存储器实现持久化。思科已发布补丁,CISA要求机构清点易受攻击系统并在今日前完成修补。
康考迪亚大学研究团队通过对比混合量子-经典神经网络与传统模型在三个基准数据集上的表现,发现量子增强模型在准确率、训练速度和资源效率方面均显著优于传统方法。研究显示混合模型的优势随数据集复杂度提升而增强,在CIFAR100上准确率提升9.44%,训练速度提升5-12倍,且参数更少。该成果为实用化量子增强人工智能铺平道路。
TimeWave是一款功能全面的计时器应用,超越了苹果自带时钟应用的功能。它支持创建流式计时器,让用户可以设置连续的任务计时,帮助专注工作。应用采用简洁的黑白设计,融入了Liquid Glass元素。内置冥想、番茄工作法、20-20-20护眼等多种计时模式,支持实时活动显示和Siri快捷指令。免费版提供基础功能,高级版需付费订阅。
沙特KAUST大学团队开发了专门针对阿拉伯语的AI模型家族"Hala",通过创新的"翻译再调优"技术路线,将高质量英语指令数据转化为450万规模的阿拉伯语语料库,训练出350M到9B参数的多个模型。在阿拉伯语专项测试中,Hala在同规模模型中表现最佳,证明了语言专门化策略的有效性,为阿拉伯语AI发展和其他语言的专门化模型提供了可复制的技术方案。