企业在大规模人工智能 (AI) 项目上的投入,正不断引领它们跨入超级计算的领域 —— 无论企业是否将此称为超级计算 —— 据惠普企业(HPE)高性能计算 (HPC) 与 AI 基础设施解决方案高级副总裁兼总经理 Trish Damkroger 指出。
Damkroger 在近期接受 Computer Weekly 采访时指出,构成现代 AI 基础设施的基本原则 —— 海量计算能力、高密度配置以及扩展架构 —— 与传统超级计算有着直接对应的关系。
“无论你是否称之为超级计算,其实都是在谈论超级计算,”她说道。“这本质上是密集式计算和扩展架构,”她补充,并指出不断增长的算力需求是一个明显信号,同时她提到与客户讨论建设一吉瓦数据中心的情况,这已逐渐成为常态。
虽然“超级计算”一词可能会让人联想到科研机构,但 Damkroger 表示,一些行业也在利用 HPC 来运行 AI 应用。她举例说明,一个量化交易基金正考虑利用超级计算机,因为这种机器对于需要直接液冷支持的高密度 AI 工作负载来说,更具成本效益。
此外,韩国的 SK Telecom 也在利用超级计算来训练基于 OpenAI 的 GPT-3 的大型韩语语言模型。这些模型为该电信公司移动网络中的 AI 服务及应用提供动力。HPE 则提供了一套集成的高性能架构,以支持大规模训练与部署。
在日本,东洋轮胎采用了搭载 HPE Cray XD 系统的 HPE GreenLake,加速了用于轮胎设计模拟的运算。通过性能提升三倍的优势,该公司如今能够在一半的时间内完成复杂的大规模模拟,从而利用 HPC 与 AI 加速产品开发。
事实上,AI 的不断普及推动了亚太 (APAC) 地区对 HPC 系统的兴趣。“去年,我们在亚太地区的 AI 销售额仅次于北美,而这在以往并不常见,”Damkroger 说道。“该地区的 AI 领域正迎来巨大发展。”
为了满足各类企业需求,HPE 提供了一套灵活的软件策略。其中包括 AI 工厂,允许客户在 HPE 的集群管理软件之上选择开源框架,并通过 Morpheus 混合云管理平台进行编排。对于寻求更即插即用功能的用户,Damkroger 表示 HPE 的 Private Cloud AI 是一项精心策划的产品,它可以让 AI 与 IT 团队进行实验并扩展 AI 项目。“这就像一键启用 AI 的简单按钮,”她补充道。
尽管 AI 技术的进步与广泛采用已经取得显著发展,但找到真正利用 HPC 实现变革性企业 AI 应用的案例仍然是一项持续的探索。“如果具体看企业中的 AI 应用,确实有一些优秀的案例,但我认为我们还没有发现那些最惊人的应用,”Damkroger 坦言。
尽管内部效率提升(如利用大语言模型编写服务文档)极具价值,但她表示,“我不确定我们是否找到了那款足以抵消高昂成本的杀手级应用,”她指出,目前企业在广泛采用 HPC 辅助 AI 时所面临的主要挑战包括初期基础设施投资、功耗需求以及持续的人才短缺。
针对大多数企业首先选择利用公共云来运行 HPC 和 AI 工作负载的现状,Damkroger 表示,对于长期且密集的使用场景,将 HPC 部署在本地会更具成本效益。
“我们发现,在 HPC 领域,如果你的使用率超过 70%,本地部署会更加经济实惠,”Damkroger 说道。然而,她也承认公共云在探索性研究和低需求场景中的作用,并补充说,数据安全问题同样是促使敏感 HPC 工作负载倾向于本地部署的关键因素。
回顾 HPE 在 HPC 领域的深厚积淀 —— 包含即将迎来首台超级计算机 50 周年的 Cray 传承 —— Damkroger 表示:“现阶段液体冷却技术如此突出,实在让人感到兴奋。我们终于看到过去 50 年所做所有工作的成果,并将其优势尽情发挥出来。”
好文章,需要你的鼓励
多伦多大学研究团队提出Squeeze3D压缩框架,巧妙利用3D生成模型的隐含压缩能力,通过训练映射网络桥接编码器与生成器的潜在空间,实现了极致的3D数据压缩。该技术对纹理网格、点云和辐射场分别达到2187倍、55倍和619倍的压缩比,同时保持高视觉质量,且无需针对特定对象训练网络,为3D内容传输和存储提供了革命性解决方案。
浙江大学与腾讯联合研究团队提出MoA异构适配器混合方法,通过整合不同类型的参数高效微调技术,解决了传统同质化专家混合方法中的表征坍塌和负载不均衡问题。该方法在数学和常识推理任务上显著优于现有方法,同时大幅降低训练参数和计算成本,为大模型高效微调提供了新的技术路径。
耶鲁、哥大等四校联合研发的RKEFino1模型,通过在Fino1基础上注入XBRL、CDM、MOF三大监管框架知识,显著提升了AI在数字监管报告任务中的表现。该模型在知识问答准确率提升超过一倍,数学推理能力从56.87%提升至70.69%,并在新颖的数值实体识别任务中展现良好潜力,为金融AI合规应用开辟新路径。
加州大学圣巴巴拉分校研究团队开发出能够自我进化的AI智能体,通过《卡坦岛拓荒者》桌游测试,这些AI能在游戏过程中自主修改策略和代码。实验显示,具备自我进化能力的AI显著超越静态版本,其中Claude 3.7模型性能提升达95%。研究验证了AI从被动工具向主动伙伴转变的可能性,为复杂决策场景中的AI应用开辟新路径。