总部位于上海的人工智能公司MiniMax发布了一款开源推理模型,在性能和成本方面对中国竞争对手DeepSeek以及美国的Anthropic、OpenAI和Google发起挑战。
MiniMax-M1于周一基于Apache软件许可证发布,因此是真正的开源模型,这与Meta的Llama系列(采用非开源的社区许可证)和DeepSeek(仅部分采用开源许可证)形成鲜明对比。
MiniMax在博客文章中自豪地表示:"在复杂的生产力导向场景中,M1的能力在开源模型中名列前茅,超越了国内闭源模型,接近领先的海外模型,同时提供业界最佳的成本效益。"
根据博客文章,M1在多个基准测试(AIME 2024、LiveCodeBench、SWE-bench Verified、Tau-bench和MRCR)上与OpenAI o3、Gemini 2.5 Pro、Claude 4 Opus、DeepSeek R1、DeepSeek R1-0528和Qwen3-235B展开竞争,在不同程度上领先或落后于其他模型。虽然供应商提供的基准测试结果需要谨慎对待,但源代码已在GitHub上公开,用户可以独立验证其性能。
MiniMax明确表示要取代DeepSeek成为行业颠覆者,特别强调其上下文窗口(能够处理的输入量)达到100万个token,与Google Gemini 2.5 Pro相当,是DeepSeek R1容量的八倍。
在输出方面,该模型可以处理8万个token,优于DeepSeek的6.4万token容量,但略逊于OpenAI o3的10万token输出能力。
得到阿里巴巴集团、腾讯和IDG资本支持的MiniMax声称,其Lightning Attention机制通过改善注意力矩阵计算方式,提高了训练和推理效率,使M1模型在处理长上下文输入和推理时具有优势。
该公司声称:"例如,在执行8万token的深度推理时,它只需要DeepSeek R1约30%的计算能力。这一特性使我们在训练和推理方面都具有显著的计算效率优势。"
这种更高效的计算方法,结合名为CISPO的改进强化学习算法(详见M1技术报告),转化为更低的计算成本。
MiniMax声称:"整个强化学习阶段仅使用512块英伟达H800芯片运行三周,租赁成本仅为53.74万美元。这比最初预期少了一个数量级。"
好文章,需要你的鼓励
微软高级软件工程师Alice Vinogradova将自己用SAP ABAP语言编写的向量数据库ZVDB移植到了搭载Z80处理器的经典计算机Sinclair ZX Spectrum上。她发现ABAP(1983年)和Z80(1976年)几乎是同时代产物,都诞生于内存珍贵、每个字节都很重要的计算时代。通过应用Z80优化技术,尽管时钟频率相差857倍,但代码运行速度仅慢3-6倍。她认为这些老式优化技术具有普遍适用性,在现代硬件上依然有效。
这项由东京科学技术大学等机构联合发布的研究提出了UMoE架构,通过重新设计注意力机制,实现了注意力层和前馈网络层的专家参数共享。该方法在多个数据集上显著优于现有的MoE方法,同时保持了较低的计算开销,为大语言模型的高效扩展提供了新思路。
韩国电子巨头三星宣布收购美国西雅图数字健康技术公司Xealth,进一步扩大在健康领域的布局。Xealth专注于帮助医疗专业人员将数字健康技术整合到日常实践中,与70多家数字健康技术供应商合作,应用覆盖美国500多家医院。此次收购将推动三星向连接医疗保健平台转型,结合其在传感器技术和可穿戴设备方面的优势,完善Samsung Health平台功能。
小米团队开发的MiMo-7B模型证明了AI领域"小而精"路线的可行性。这个仅有70亿参数的模型通过创新的预训练数据处理、三阶段训练策略和强化学习优化,在数学推理和编程任务上超越了320亿参数的大模型,甚至在某些指标上击败OpenAI o1-mini。研究团队还开发了高效的训练基础设施,将训练速度提升2.29倍。该成果已完全开源,为AI民主化发展提供了新思路。