凯捷研究院一项针对大型企业的调研显示,尽管使用人工智能自动化重复性业务任务能带来显著成本节约,但目前改进的任务相对简单。调研中相当数量的商业领袖表示,他们更倾向于专有AI实施方案而非开源替代品。
该调研涵盖1607名来自全球收入至少10亿美元企业的高管,结果显示商业领袖通过AI和生成式AI实现了客户运营成本40%的降幅。受访高管还实现了人员运营成本26%的削减、财务会计成本24%的降低,以及供应链和采购成本21%的减少。
作为行业中代理AI潜力的例证,凯捷突出介绍了塔可钟母公司百胜集团,该公司在全球运营6万家餐厅。公司引入AI驱动的餐厅管理系统来跟踪员工出勤、规划轮班模式,并根据市场条件建议调整营业时间。
虽然这些案例展现了AI和生成式AI提升商业效率的潜力,但研究发现受访者报告的收益很大一部分与自动化直接、重复性任务相关。凯捷认为,这表明受访高管对AI和生成式AI的使用代表早期阶段效率提升,而非长期变革性影响。
成本节约需要与运行AI系统的成本进行权衡。凯捷研究院指出,查询训练模型的价格正在急剧下降。例如,OpenAI的GPT 3.5从每百万令牌20美元降至0.07美元,而GPT-4在一年内从15美元降至0.12美元。
模型剪枝、量化和蒸馏等技术可用于减少AI模型的规模和复杂性。凯捷研究院指出,这些优化模型需要更少的计算资源,从而降低推理成本。除了更高效的算法外,凯捷研究院表示,高效的硬件利用、推理请求的批处理、基于当前需求动态调整计算资源的扩展,以及节能算法可以显著降低AI模型的功耗。
然而,尽管DeepSeek等开源模型已被证明能在不影响性能的情况下实现11倍的计算成本削减,并能解决许多组织面临的先进硬件瓶颈,但调研显示商业高管对开源AI的热情不如专有AI模型。
尽管开源AI模型在性能和成本方面的优势不断增加,凯捷报告称绝大多数高管仍继续偏爱专有AI实施方案。四分之三的受访高管偏好专有模型,其中43%选择超大规模云服务商开发的模型,另有三分之一选择小众供应商的模型。
凯捷发现,对专有模型和AI系统的偏好在那些已扩大AI和生成式AI投资的组织中尤为强烈。报告作者认为,这表明了一个明确趋势,即转向提供强大支持、安全性和集成能力的可信企业级AI产品。
发表在凯捷研究院《AI实践报告》中的研究结果,识别出了阻碍企业采用开源模型的一系列权衡因素,包括需要更强的技术专业知识、潜在的安全漏洞暴露,以及依赖社区驱动支持可能影响更新周期和文档质量。
凯捷商业服务首席执行官奥利弗·普费尔表示:"生成式AI和代理AI能够真正变革商业服务——实现从传统成本导向模型向AI赋能的价值和洞察驱动业务的转变。那些采用以数据和AI为核心的集成方法的企业,将能够实现真正互联、无摩擦的企业运营。"
不过,他指出研究表明组织在扩大AI代理部署时面临诸多障碍。"采用务实方法、培养对AI的信任并创建强大的数据基础,将在将商业服务转变为推动任何企业的战略动力方面发挥重要作用。"
好文章,需要你的鼓励
三星与AI搜索引擎Perplexity合作,将其应用引入智能电视。2025年三星电视用户可立即使用,2024和2023年款设备将通过系统更新获得支持。用户可通过打字或语音提问,Perplexity还为用户提供12个月免费Pro订阅。尽管面临版权争议,这一合作仍引发关注。
浙江大学团队提出动态专家搜索方法,让AI能根据不同问题灵活调整内部专家配置。该方法在数学、编程等任务上显著提升推理准确率,且不增加计算成本。研究发现不同类型问题偏爱不同专家配置,为AI推理优化开辟新路径。
苹果M5 MacBook Pro评测显示这是一次相对较小的升级。最大变化是M5芯片,CPU性能比M4提升约9%,多核性能比M4 MacBook Air快19%,GPU性能提升37%。功耗可能有所增加但电池续航保持24小时。评测者认为该产品不适合M4用户升级,但对使用older型号用户仍是强有力选择。
清华大学研究团队提出SIRI方法,通过"压缩-扩张"交替训练策略,成功解决了大型推理模型"话多且准确率低"的问题。实验显示,该方法在数学竞赛题上将模型准确率提升43.2%的同时,输出长度减少46.9%,真正实现了效率与性能的双重优化,为AI模型训练提供了新思路。