CloudBees首席执行官Anuj Kapur在接受采访时表示,人工智能可能会重新检验DevOps整体的基础假设,但他警告不要为了追求更高效率而冒着创建黑盒化代码的风险。他还指出,一些因担心错失机会而匆忙采用AI生成代码的客户,现在开始放慢脚步,采取更加谨慎的态度。
CloudBees成立于2010年,长期以来一直与Jenkins自动化服务器密切相关。2022年,来自思科和SAP的资深人士Anuj Kapur接替CloudBees联合创始人Sacha Labourey担任总裁兼首席执行官,这发生在生成式AI革命席卷科技行业之前不久。
多年来,该公司一直保持着相关性,最近转向了DevOps中的生成式AI领域。今年6月,公司推出了CloudBees Unify模型上下文协议(MCP)服务器的早期访问版本,作为其Unify DevOps工具与不断扩展的大语言模型代理生态系统之间的桥梁。
"这很令人兴奋,"Kapur轻描淡写地说。"我们所做的转变,在某种程度上,反映了客户希望我们做的事情以及问题陈述。"
CloudBees跟随科技行业的大多数公司一样,跳上了AI列车。在2024年初,Labourey在接受The Register采访时预测,AI将"在平台上占据相当重要的地位"。
Kapur在本周的采访中呼应了这些评论,但带有一些商业现实的色彩。是的,客户对生产力可能性非常兴奋,但一些客户意识到这些可能性需要通过经验来调节。毕竟,快速移动是很好的,但当太多东西被破坏时会发生什么?
"我们实际上即将将整整一代软件外包给提示工程,并有效地创建一个代码黑盒,这些代码不是由人类生成的,"Kapur说,"而是基于基础模型,从效率角度来看可能很棒,但这引出了一个问题:这种数量和速度对后端输出质量的下游影响是什么?当这些事情确实发生时,我们实际诊断故障根本原因的能力如何?因为那些代码会失败。"
Kapur称机器生成代码的黑盒影响"深远"。
"质量如何?"他问道。"测试覆盖率如何?可恢复性如何?与之相关的漏洞是什么?生成的代码只有输入的提示那么好,在某些情况下,这些提示主要由人类输入。所以在某些方面,我们正处于需要对拥抱AI的速度以及管道中需要发生的下游检查和平衡进行深思熟虑的时刻,以确保生成的代码能够产生适当的结果。"
他补充说,引用支付巨头Stripe的Collison兄弟的话:"你应该关注趋势的二阶影响,而不是一阶影响。对我们来说,这意味着我们需要专注于测试,因为我们感到在当前一代中,测试覆盖率相当有限。"当然,使用AI工具,代码的数量和速度可能会增加10倍,但Kapur观察到,"那些下游影响会发生什么?"
Kapur还表示,许多客户最初都有错失恐惧症,担心不跳上潮流可能会让更前沿的竞争对手获得优势,但正在克服这种情况。"我想说这种恐惧已经消退,"他告诉我们。"这使他们对需要推进这一趋势的速度以及需要创建的保障措施更加深思熟虑。"
Kapur说,这可能意味着公司在疯狂冲向使用AI输出代码后会暂停一下。"我认为我们正处于你将看到一些公开退缩的时刻。"
除非采用更保守和谨慎的方法。"我们的客户,"他说,"特别是那些有监管负担或声誉负担的客户……我认为这些客户会思考这个问题。他们会考虑走得太快的负面影响。我认为这迫使客户在真正能够采用的东西方面保持一定程度的保守主义。客户已经从过去基本上走得太快并冲入死角的循环中吸取了教训。"
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。