谷歌DeepMind于周二发布了一款名为Gemini Robotics On-Device的新型语言模型,该模型可在机器人上本地执行任务,无需互联网连接。
基于该公司今年3月发布的Gemini Robotics模型,Gemini Robotics On-Device能够控制机器人的运动。开发者可以使用自然语言提示来控制和微调模型,以满足各种需求。
在基准测试中,谷歌声称该模型的性能接近基于云端的Gemini Robotics模型。公司表示,在通用基准测试中,它优于其他设备端模型,尽管没有具体说明这些模型的名称。
在演示中,该公司展示了运行这一本地模型的机器人执行解拉链包和折叠衣物等任务。谷歌表示,虽然该模型最初是为ALOHA机器人训练的,但后来适配到双臂Franka FR3机器人和Apptronik公司的Apollo人形机器人上。
谷歌声称双臂Franka FR3成功应对了之前从未"见过"的场景和物体,比如在工业传送带上进行装配作业。
谷歌DeepMind还发布了Gemini Robotics SDK。公司表示,开发者可以向机器人展示50到100次任务演示,在MuJoCo物理模拟器上使用这些模型训练机器人执行新任务。
其他AI模型开发者也在涉足机器人领域。英伟达正在构建一个为人形机器人创建基础模型的平台;Hugging Face不仅在开发开源机器人模型和数据集,还在研发机器人;韩国创业公司RLWRLD获得未来资产投资,正致力于创建机器人基础模型。
好文章,需要你的鼓励
本文评测了六款控制台平铺终端复用器工具。GNU Screen作为老牌工具功能强大但操作复杂,Tmux更现代化但学习曲线陡峭,Byobu为前两者提供友好界面,Zellij用Rust编写界面简洁易用,DVTM追求极简主义,Twin提供类似TurboVision的文本界面环境。每款工具都有各自特点和适用场景。
纽约大学研究团队通过INT-ACT测试套件全面评估了当前先进的视觉-语言-动作机器人模型,发现了一个普遍存在的"意图-行动差距"问题:机器人能够正确理解任务和识别物体,但在实际动作执行时频频失败。研究还揭示了端到端训练会损害原有语言理解能力,以及多模态挑战下的推理脆弱性,为未来机器人技术发展提供了重要指导。
网络安全公司Snyk宣布收购瑞士人工智能安全研究公司Invariant Labs,收购金额未公开。Invariant Labs从苏黎世联邦理工学院分拆成立,专注于帮助开发者构建安全可靠的AI代理工具和框架。该公司提供Explorer运行时观察仪表板、Gateway轻量级代理、Guardrails策略引擎等产品,并在工具中毒和模型上下文协议漏洞等新兴AI威胁防护方面处于领先地位。此次收购将推进Snyk保护下一代AI原生应用的使命。
北卡罗来纳大学教堂山分校研究团队提出MEXA框架,通过动态选择和聚合多个专业AI模型来处理复杂的多模态推理任务。该方法无需额外训练,在视频理解、音频分析、3D场景理解和医学诊断等多个基准测试中显著超越现有模型,为AI系统设计提供了新思路。