谷歌DeepMind于周二发布了一款名为Gemini Robotics On-Device的新型语言模型,该模型可在机器人上本地执行任务,无需互联网连接。
基于该公司今年3月发布的Gemini Robotics模型,Gemini Robotics On-Device能够控制机器人的运动。开发者可以使用自然语言提示来控制和微调模型,以满足各种需求。
在基准测试中,谷歌声称该模型的性能接近基于云端的Gemini Robotics模型。公司表示,在通用基准测试中,它优于其他设备端模型,尽管没有具体说明这些模型的名称。
在演示中,该公司展示了运行这一本地模型的机器人执行解拉链包和折叠衣物等任务。谷歌表示,虽然该模型最初是为ALOHA机器人训练的,但后来适配到双臂Franka FR3机器人和Apptronik公司的Apollo人形机器人上。
谷歌声称双臂Franka FR3成功应对了之前从未"见过"的场景和物体,比如在工业传送带上进行装配作业。
谷歌DeepMind还发布了Gemini Robotics SDK。公司表示,开发者可以向机器人展示50到100次任务演示,在MuJoCo物理模拟器上使用这些模型训练机器人执行新任务。
其他AI模型开发者也在涉足机器人领域。英伟达正在构建一个为人形机器人创建基础模型的平台;Hugging Face不仅在开发开源机器人模型和数据集,还在研发机器人;韩国创业公司RLWRLD获得未来资产投资,正致力于创建机器人基础模型。
好文章,需要你的鼓励
邻里社交应用Nextdoor推出重新设计版本,新增本地新闻、实时警报和名为"Faves"的AI功能,用于发现本地商户和地点。该应用与3500家本地出版商合作提供新闻内容,通过Samdesk和Weather.com提供天气、交通、停电等实时警报。Faves功能利用15年邻里对话数据训练的大语言模型,为用户提供本地化AI推荐服务,帮助用户找到最佳餐厅、徒步地点等本地信息。
Skywork AI推出的第二代多模态推理模型R1V2,通过创新的混合强化学习方法,成功解决了AI"慢思考"策略在视觉推理中的挑战。该模型在保持强大推理能力的同时有效控制视觉幻觉,在多项权威测试中超越同类开源模型,某些指标甚至媲美商业产品,为开源AI发展树立了新标杆。
英国生物银行完成了世界上最大规模的全身成像项目,收集了10万名志愿者的超过10亿次扫描数据,用于研究人体衰老和疾病过程。该项目历时11年,每次扫描耗时5小时,投资6200万英镑。目前已有8万人的成像数据供全球研究人员使用,剩余数据将于年底前发布。项目已开发出能预测38种常见疾病的AI工具,并在心脏病、痴呆症和癌症诊断方面取得突破。
这项由北京大学等多所高校联合完成的研究,首次对OpenAI GPT-4o的图像生成能力进行了全面评估。研究团队设计了名为GPT-ImgEval的综合测试体系,从文本转图像、图像编辑和知识驱动创作三个维度评估GPT-4o,发现其在所有测试中都显著超越现有方法。研究还通过技术分析推断GPT-4o采用了自回归与扩散相结合的混合架构,并发现其生成图像仍可被现有检测工具有效识别,为AI图像生成领域提供了重要的评估基准和技术洞察。