FileAI表示,其已准备好通过全新的智能体人工智能平台为会计、数据收集、金融服务、法律和保险行业的工作流自动化提供强大支持,该平台能够自动化数百项人工和重复性任务。
这家初创公司,正式名称为Bluesheets Pte Ltd.,开发了一个智能体AI平台,专门用于收集和理解各种文件类型的业务数据,包括断开连接的数据库、非结构化格式和孤立系统。该平台将这些数据整合在一起,更好地理解数据并推动自动化发展。
FileAI联合创始人兼首席执行官Christian Schneider表示,能够理解和结合这些不同类型的数据至关重要,因为普通企业高达90%的内容都是非结构化的,分散在PDF、Excel文件、Word文档、电子邮件系统、在线资源等各处。由于这些数据如此分散,它成为业务自动化的主要障碍。FileAI通过将这些碎片化信息转换为清洁、可验证和结构化的数据来解决这个问题,让智能体能够理解这些数据。
"我们始终专注于基础——提供尽可能最清洁、最准确的数据,让AI工作流真正实现自动化承诺,"Schneider说。"我们调用确定性行为,消除幻觉,添加引用并验证每个数据点,超越人类准确性。这不仅仅是升级,而是重新定义文件智能的能力。"
FileAI的平台由多个智能体组成,共同执行各种业务任务,包括一个光学字符识别引擎,能够解析、提取、分类和验证合同、发票、财务报表和图像等数据访问文件,以及一个获取和检索智能体,能够定位和比较不同文件类型并验证其中的信息。
该公司还构建了一个类似ChatGPT的AI驱动答案引擎,使员工能够轻松查询其数据文件,以及一个具有强大访问控制的安全文档存储库,任何添加的文档都可以通过AI进行洞察分析。最后,还有一个推理模型,能够创建复杂的AI数据模式来支持工作自动化。
FileAI平台的综合能力支持智能体执行各种工作,如为保险公司提供索赔处理、保单验证和监管报告,为金融服务客户提供交易验证、客户身份验证检查、对账和风险管理。在供应链行业,其模型可以自动化采购和订单管理,而对于法律团队,它能够比较各种法律条款、审查合同并执行合规检查。
直到现在,FileAI一直在与早期采用者低调运营,但在过去一年中,它已经为这些客户创建了超过4亿个AI模式,总共节省了320万小时的工作时间和6000万美元的处理成本。
FileAI产品和工程主管Tim Prugar表示,公司的发展势头源于上述行业的组织面临着尽可能多地自动化工作的巨大压力。"FileAI为他们提供了访问、结构化和处理关键信息的工具,以推动成功的业务成果,而不是被过时的流程和碎片化数据所拖累,"他说。
好文章,需要你的鼓励
Gartner预测,到2030年所有IT工作都将涉及AI技术的使用,这与目前81%的IT工作不使用AI形成鲜明对比。届时25%的IT工作将完全由机器人执行,75%由人类在AI辅助下完成。尽管AI将取代部分入门级IT职位,但Gartner认为不会出现大规模失业潮,目前仅1%的失业由AI造成。研究显示65%的公司在AI投资上亏损,而世界经济论坛预计AI到2030年创造的就业机会将比消除的多7800万个。
谷歌DeepMind团队开发的GraphCast是一个革命性的AI天气预测模型,能够在不到一分钟内完成10天全球天气预报,准确性超越传统方法90%的指标。该模型采用图神经网络技术,通过学习40年历史数据掌握天气变化规律,在极端天气预测方面表现卓越,能耗仅为传统方法的千分之一,为气象学领域带来了效率和精度的双重突破。
人工智能正从软件故事转向AI工厂基础,芯片、数据管道和网络协同工作形成数字化生产系统。这种新兴模式重新定义了性能衡量标准和跨行业价值创造方式。AI工厂将定制半导体、低延迟结构和大规模数据仪器整合为实时反馈循环,产生竞争优势。博通、英伟达和IBM正在引领这一转变,通过长期定制芯片合同和企业遥测技术,将传统体验转化为活跃的数字生态系统。
韩国成均馆大学研究团队开发了首个机器遗忘可视化评估系统Unlearning Comparator,解决了AI"选择性失忆"技术缺乏标准化评估的问题。系统通过直观界面帮助研究人员深入比较不同遗忘方法,并基于分析洞察开发出性能优异的引导遗忘新方法,为构建更负责任的AI系统提供重要工具支持。