AI领域持续快速发展,特别是自DeepSeek及其追随者推出以来。许多人得出结论,企业并不真正需要OpenAI、Meta和谷歌推广的大型昂贵AI模型,而是专注于更小的模型,如拥有24亿参数的DeepSeek V2-Lite,或拥有170亿参数的Llama 4 Scout和Maverick,这些模型能够以更低的成本提供不错的准确性。然而,对于程序员来说情况并非如此,或者更准确地说,对于那些能够并将会取代许多程序员的模型来说并非如此。"越小越好"的理念也不适用于推理或智能体AI——下一个重大发展方向。
AI代码生成器需要能够处理更大上下文窗口的大型模型,能够容纳大约10万行代码。支持智能体和推理AI的专家混合(MOE)模型也很庞大。但这些大型模型通常相当昂贵,在现代GPU上每百万输出Token的成本约为10到15美元。这为新型AI架构侵蚀GPU领域提供了机会。
Cerebras Systems推出搭载Qwen3-235B的大型AI
Cerebras Systems(寒武纪AI研究的客户)宣布支持大型Qwen3-235B,支持131K上下文长度(约200-300页文本),是之前可用长度的四倍。在巴黎的RAISE峰会上,Cerebras推广了阿里巴巴的Qwen3-235B,该模型使用高效的专家混合架构来提供出色的计算效率。但真正的新闻是,Cerebras能够以每百万输入Token和每百万输出Token仅0.60美元的价格运行该模型——不到同类闭源模型成本的十分之一。虽然许多人认为Cerebras晶圆级引擎价格昂贵,但这一数据颠覆了这种看法。
我经常被问到的一个问题是,如果Cerebras如此快速,为什么他们没有更多客户?一个原因是他们之前不支持大上下文窗口和更大的模型。例如,那些寻求开发代码的人不想将问题分解成更小的片段来适应32KB的上下文。现在,这个销售障碍已经消失。
"我们看到开发者对具有长上下文的前沿模型有巨大需求,特别是用于代码生成,"Cerebras Systems首席执行官兼创始人Andrew Feldman说。"Cerebras上的Qwen3-235B是我们第一个能与Claude 4和DeepSeek R1等前沿模型相提并论的模型。凭借完整的131K上下文,开发者现在可以在生产级编码应用中使用Cerebras,并在不到一秒钟内获得答案,而不是在GPU上等待数分钟。"
Cerebras将其上下文长度支持从32K增加到131K Token——这是Qwen3-235B支持的最大值,增长了四倍。这种扩展直接影响了模型在大型代码库和复杂文档上的推理能力。虽然32K上下文足以应对简单的代码生成用例,但131K上下文使模型能够同时处理数十个文件和数万行代码,支持生产级应用开发。
Qwen3-235B在需要深度逻辑推理、高级数学和代码生成的任务中表现出色,这得益于其在"思考模式"(用于高复杂度任务)和"非思考模式"(用于高效的通用对话)之间切换的能力。131K上下文长度允许模型摄取和推理大型代码库(数万行),支持代码重构、文档编写和错误检测等任务。
Cerebras还宣布进一步扩展其生态系统,获得了DataRobot、Docker、Cline和Notion的支持。
发展方向如何?
大型AI一直在被缩小和优化,在性能、模型大小和价格方面实现了数量级的提升和降低。这一趋势无疑会继续,但会被能力、准确性、智能水平的提升以及跨模态的全新功能不断抵消。因此,如果你想要去年的AI,你的处境很好,因为它会继续变得更便宜。
但如果你想要最新的特性和功能,你将需要最大的模型和最长的输入上下文长度。
这就是AI的阴阳两面。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。