AI领域持续快速发展,特别是自DeepSeek及其追随者推出以来。许多人得出结论,企业并不真正需要OpenAI、Meta和谷歌推广的大型昂贵AI模型,而是专注于更小的模型,如拥有24亿参数的DeepSeek V2-Lite,或拥有170亿参数的Llama 4 Scout和Maverick,这些模型能够以更低的成本提供不错的准确性。然而,对于程序员来说情况并非如此,或者更准确地说,对于那些能够并将会取代许多程序员的模型来说并非如此。"越小越好"的理念也不适用于推理或智能体AI——下一个重大发展方向。
AI代码生成器需要能够处理更大上下文窗口的大型模型,能够容纳大约10万行代码。支持智能体和推理AI的专家混合(MOE)模型也很庞大。但这些大型模型通常相当昂贵,在现代GPU上每百万输出Token的成本约为10到15美元。这为新型AI架构侵蚀GPU领域提供了机会。
Cerebras Systems推出搭载Qwen3-235B的大型AI
Cerebras Systems(寒武纪AI研究的客户)宣布支持大型Qwen3-235B,支持131K上下文长度(约200-300页文本),是之前可用长度的四倍。在巴黎的RAISE峰会上,Cerebras推广了阿里巴巴的Qwen3-235B,该模型使用高效的专家混合架构来提供出色的计算效率。但真正的新闻是,Cerebras能够以每百万输入Token和每百万输出Token仅0.60美元的价格运行该模型——不到同类闭源模型成本的十分之一。虽然许多人认为Cerebras晶圆级引擎价格昂贵,但这一数据颠覆了这种看法。
我经常被问到的一个问题是,如果Cerebras如此快速,为什么他们没有更多客户?一个原因是他们之前不支持大上下文窗口和更大的模型。例如,那些寻求开发代码的人不想将问题分解成更小的片段来适应32KB的上下文。现在,这个销售障碍已经消失。
"我们看到开发者对具有长上下文的前沿模型有巨大需求,特别是用于代码生成,"Cerebras Systems首席执行官兼创始人Andrew Feldman说。"Cerebras上的Qwen3-235B是我们第一个能与Claude 4和DeepSeek R1等前沿模型相提并论的模型。凭借完整的131K上下文,开发者现在可以在生产级编码应用中使用Cerebras,并在不到一秒钟内获得答案,而不是在GPU上等待数分钟。"
Cerebras将其上下文长度支持从32K增加到131K Token——这是Qwen3-235B支持的最大值,增长了四倍。这种扩展直接影响了模型在大型代码库和复杂文档上的推理能力。虽然32K上下文足以应对简单的代码生成用例,但131K上下文使模型能够同时处理数十个文件和数万行代码,支持生产级应用开发。
Qwen3-235B在需要深度逻辑推理、高级数学和代码生成的任务中表现出色,这得益于其在"思考模式"(用于高复杂度任务)和"非思考模式"(用于高效的通用对话)之间切换的能力。131K上下文长度允许模型摄取和推理大型代码库(数万行),支持代码重构、文档编写和错误检测等任务。
Cerebras还宣布进一步扩展其生态系统,获得了DataRobot、Docker、Cline和Notion的支持。
发展方向如何?
大型AI一直在被缩小和优化,在性能、模型大小和价格方面实现了数量级的提升和降低。这一趋势无疑会继续,但会被能力、准确性、智能水平的提升以及跨模态的全新功能不断抵消。因此,如果你想要去年的AI,你的处境很好,因为它会继续变得更便宜。
但如果你想要最新的特性和功能,你将需要最大的模型和最长的输入上下文长度。
这就是AI的阴阳两面。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。