社交媒体巨头Meta开发了一个AI模型来创造新型混凝土配方,并将其中一种配方用于新数据中心的建设。
与任何建设数据中心的企业一样,Meta需要混凝土——为其本周早些时候宣布的千兆瓦级设施群建设数千平方英里的地基。该公司也热衷于减少碳足迹,这一目标因混凝土而变得复杂,因为这种物质被认为贡献了约10%的二氧化碳排放量。
Meta并非唯一想要更环保混凝土的公司——The Register去年报道了开放计算项目(OCP)开发和测试低碳混凝土的努力。
此类物质的测试是必要的,因为混凝土配方的细微变化可能改变其性能,而数据中心是热量和振动持续存在的苛刻环境。
Meta去年观察了OCP的努力,但早在2023年就已经在一篇题为"通过贝叶斯优化实现可持续混凝土"的论文中研究计算机辅助混凝土创造。
这项工作似乎为Meta周三的公告提供了信息,该公司创建了一个采用贝叶斯优化的模型来预测"与不同混凝土混合物相关的抗压强度曲线"。
Meta在相关帖子中解释说:"设计混凝土配方是一个复杂的多目标问题。设计师必须在各种类型和比例的水泥、低碳补充胶凝材料(SCM)、水胶比、粗细骨料类型和外加剂之间做出选择。SCM对混凝土性能的影响因来源位置和季节性而异,需要长期测试来验证。最后,需要耗时数天至数周的测试来完全验证新混合物的性能。"
Meta的模型加速了这一过程,在建筑公司Amrize和伊利诺伊大学厄巴纳-香槟分校的帮助下,这家社交网络公司在明尼苏达州罗斯蒙特的数据中心浇筑了新混凝土。当地媒体报道,该设施最初将消耗10兆瓦电力,并在未来几年内增加到75兆瓦。
许多AI专家预测AI将改变科学家抗击癌症或发明药物的方式。
AI帮助开发新型混凝土形式虽然不太引人注目,但同样重要。
大型科技公司知道为其庞大数据中心群供电所产生的电力会产生大量二氧化碳排放,因此寻求更便宜且可能更有利于提升声誉的替代方案。通过这一努力,Meta甚至添加了一些AI魔法,并通过MIT许可证发布其代码来与他人分享其工作。
但是,虽然Meta公布了其研发混凝土强度的信息,但并未详细说明在罗斯蒙特使用的混凝土配方的二氧化碳排放量。
也许AI可以解决这个问题。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。