社交媒体巨头Meta开发了一个AI模型来创造新型混凝土配方,并将其中一种配方用于新数据中心的建设。
与任何建设数据中心的企业一样,Meta需要混凝土——为其本周早些时候宣布的千兆瓦级设施群建设数千平方英里的地基。该公司也热衷于减少碳足迹,这一目标因混凝土而变得复杂,因为这种物质被认为贡献了约10%的二氧化碳排放量。
Meta并非唯一想要更环保混凝土的公司——The Register去年报道了开放计算项目(OCP)开发和测试低碳混凝土的努力。
此类物质的测试是必要的,因为混凝土配方的细微变化可能改变其性能,而数据中心是热量和振动持续存在的苛刻环境。
Meta去年观察了OCP的努力,但早在2023年就已经在一篇题为"通过贝叶斯优化实现可持续混凝土"的论文中研究计算机辅助混凝土创造。
这项工作似乎为Meta周三的公告提供了信息,该公司创建了一个采用贝叶斯优化的模型来预测"与不同混凝土混合物相关的抗压强度曲线"。
Meta在相关帖子中解释说:"设计混凝土配方是一个复杂的多目标问题。设计师必须在各种类型和比例的水泥、低碳补充胶凝材料(SCM)、水胶比、粗细骨料类型和外加剂之间做出选择。SCM对混凝土性能的影响因来源位置和季节性而异,需要长期测试来验证。最后,需要耗时数天至数周的测试来完全验证新混合物的性能。"
Meta的模型加速了这一过程,在建筑公司Amrize和伊利诺伊大学厄巴纳-香槟分校的帮助下,这家社交网络公司在明尼苏达州罗斯蒙特的数据中心浇筑了新混凝土。当地媒体报道,该设施最初将消耗10兆瓦电力,并在未来几年内增加到75兆瓦。
许多AI专家预测AI将改变科学家抗击癌症或发明药物的方式。
AI帮助开发新型混凝土形式虽然不太引人注目,但同样重要。
大型科技公司知道为其庞大数据中心群供电所产生的电力会产生大量二氧化碳排放,因此寻求更便宜且可能更有利于提升声誉的替代方案。通过这一努力,Meta甚至添加了一些AI魔法,并通过MIT许可证发布其代码来与他人分享其工作。
但是,虽然Meta公布了其研发混凝土强度的信息,但并未详细说明在罗斯蒙特使用的混凝土配方的二氧化碳排放量。
也许AI可以解决这个问题。
好文章,需要你的鼓励
Allen AI研究所联合多家顶尖机构推出SAGE智能视频分析系统,首次实现类人化的"任意时长推理"能力。该系统能根据问题复杂程度灵活调整分析策略,配备六种智能工具进行协同分析,在处理10分钟以上视频时准确率提升8.2%。研究团队创建了包含1744个真实娱乐视频问题的SAGE-Bench评估平台,并采用创新的AI生成训练数据方法,为视频AI技术的实际应用开辟了新路径。
联想推出新一代NVMe存储解决方案DE6600系列,包含全闪存DE6600F和混合存储DE6600H两款型号。该系列产品延迟低于100微秒,支持多种连接协议,2U机架可容纳24块NVMe驱动器。容量可从367TB扩展至1.798PiB全闪存或7.741PiB混合配置,适用于AI、高性能计算、实时分析等场景,并配备双活控制器和XClarity统一管理平台。
中科院团队首次系统评估了AI视觉模型在文本压缩环境下的理解能力,发现虽然AI能准确识别压缩图像中的文字,但在理解深层含义、建立关联推理方面表现不佳。研究通过VTCBench测试系统揭示了AI存在"位置偏差"等问题,为视觉文本压缩技术的改进指明方向。