我们许多人已经接受了这样一个观念:我们很快就会与机器人并肩工作,或者至少是与AI智能体和实体协作。
那么作为人类,我们希望这些数字同事为我们做些什么呢?
委派工作是如何运作的?
斯坦福大学最近进行了一项研究,作者对100多种工作类型中的15000名员工进行了调查,以了解他们对AI应用的真实想法。
研究动机
我认为其中一位作者的评论很好地总结了这份报告的目的:
"随着AI系统能力日益增强,关于如何在工作场所部署这些系统的决策往往由技术可行性驱动,"项目负责人、斯坦福大学计算机科学系博士生邵艺佳写道,"然而,员工是受这些变化影响最大的群体,也是经济最终依赖的群体。"
换句话说,一线员工将是受这些变化影响最大的群体,所以我们不妨听听他们的意见(除了进行各种市场研究)。建议箱之所以成为商业智能的经典要素是有原因的。技术必须契合需求——它不是你可以随意实施的东西,不能像掷飞镖一样盲目决策,然后期望所有相关人员都签字同意并配合执行。
研究结果
在实际研究发现方面,斯坦福研究人员发现,正如比利·乔尔著名歌曲所唱的,很大程度上归结为信任问题:45%的受访者对可靠性存疑,据报告23%的人担心失业。
至于员工倾向于自动化的任务类型,研究提供了一个有用的可视化图表,展示了各种必需功能与某些应用危险区域的对比。
具体而言,斯坦福研究人员将其分为"绿灯区"和"红灯区",以及"低优先级区"和"机会区",后者包含员工可能希望使用但技术上尚不可行的用途。
绿灯区的用途包括税务准备人员的调度任务、质量控制报告以及工程报告的解释。
员工谨慎对待的红灯区用途包括市政职员的会议议程准备,以及物流分析中联系潜在供应商的任务。
还有研究硬件或软件产品的任务,接受调查的计算机网络支持专家似乎更愿意自己完成这类工作。
我觉得有趣的是,低优先级区中有一项是"追踪丢失、延误或错误投递的行李",这项工作通常由票务代理完成。这很好地解释了为什么众多倒霉的旅客到达远方的爱彼迎住所时连一把牙刷都没有。
至于机会区,技术写作人员似乎希望AI来安排材料分发,计算机科学家基本上会同意技术处理运营预算,而视频游戏设计师希望生产计划自动化。
为什么要自动化?
我还看到了研究中的一个部分,研究人员调查了受访者希望自动化的原因。
似乎有超过2500名受调查员工希望自动化某项任务,因为这将为其他类型的工作腾出时间。
大约1500人提到了可以自动化的"重复性或枯燥"任务,大约同样数量的人建议自动化特定任务将提高工作质量。
较少的人建议自动化压力大或精神疲惫的任务,或者那些复杂或困难的任务。
该研究还将任务和流程分解为三个控制区域,包括"AI智能体驱动任务完成"、"人类驱动任务完成"或"平等伙伴关系"(以及另外两个等级)。你可以在这里查看完整研究,或在这里收听我最喜欢的相关播客。
其中一个重点项目是对分析或信息处理技能需求减少的预测。这与更多关注管理、人际关系或协调工作角色相关。然而,这将如何发展让许多员工担忧,我认为只有23%的受访者担心工作流失是一个极低的数字。几乎任何地方的任何人都应该担心工作流失。无论长期会发生什么,许多专家都预测未来几年将出现极高的失业率,因为我们正在解决这个时代最大技术转型的各种问题。
无论如何,这项研究为一个问题带来了大量有用信息——我们希望AI在企业中为我们做什么?
好文章,需要你的鼓励
谷歌宣布为Chrome iOS版推出新功能,用户可在工作和个人谷歌账户间轻松切换,无需反复登录登出。该功能支持托管账户浏览,实现严格的数据分离,工作账户的标签页、历史记录和密码等本地数据与个人浏览完全隔离。随着企业不再提供公司手机,员工常需在个人设备上访问公司资源,此更新有助企业允许员工使用自选设备。
复旦大学研究团队开发的AnyI2V系统实现了从任意条件图像到视频的生成突破。该系统无需训练即可处理多种输入模态(包括3D网格、点云等),支持用户自定义运动轨迹控制,并通过创新的特征注入和语义掩模技术实现了高质量视频生成,为视频创作领域带来了革命性的便利工具。
OpenAI宣布其最新实验性推理大语言模型在2025年国际数学奥林匹克竞赛中达到金牌水平。尽管机器在数学推理、代码生成等认知任务上表现卓越,但这并不意味着它们具备真正的智能。机器缺乏知识迁移能力、情感理解、自我意识、内在动机等关键特征。它们无法像人类那样灵活适应新环境,也不具备主观体验和意识。真正的智能需要多方面综合能力,而非仅仅在特定任务上的优异表现。
斯坦福大学研究团队开发了KL-tracing方法,能让视频生成AI模型在无需专门训练的情况下进行精确物体追踪。该方法通过在视频帧中添加微小追踪标记,利用模型的物理理解能力预测物体运动轨迹。在真实场景测试中,相比传统方法性能提升16.6%,展现了大型生成模型在计算机视觉任务中的潜力。