DDN发布了性能基准测试结果,显示其通过独特的中间KV缓存处理方式,能够将AI处理时间提速27倍。
当大语言模型或智能体在GPU上进行训练或推理工作时,会将现有和新计算的向量以键值对形式存储在内存缓存中,即KV缓存。在GPU服务器中,这种缓存可以分为两个内存层级:GPU的HBM和CPU的DRAM。当更多数据进入KV缓存时,现有数据会被驱逐。如果后续需要这些数据,要么重新计算,要么从外部存储(如本地附加的SSD或网络附加存储)中检索,后者通常比重新计算向量更快。避免KV缓存驱逐和向量重计算已成为AI训练存储供应商的基本要求,DDN、Hammerspace、VAST和WEKA都是相关厂商的例子。
DDN首席技术官Sven Oehme表示:"每当你的AI系统重新计算上下文而不是缓存它时,你就在支付GPU税——浪费本可以用来加速结果或服务更多用户的计算周期。通过DDN Infinia,我们将这个成本中心转化为性能优势。"
Infinia是DDN历时数年从头设计的对象存储系统。它提供亚毫秒级延迟,支持每秒超过100,000次AI调用,专为英伟达的H100、GB200和Bluefield DPU而构建。DDN提醒我们,英伟达曾表示智能体AI工作负载需要比传统模型多100倍的计算量。随着上下文窗口从128,000个Token扩展到超过100万个,GPU基础设施的负担急剧增加——除非有效部署KV缓存策略。
该公司表示,传统的重计算方法处理112,000个Token的任务需要57秒的处理时间。Token是向量的前身,其数量表明AI处理作业的范围。当使用DDN的Infinia存储运行相同作业时,处理时间降至2.1秒,实现27倍提速。DDN声称Infinia可以"将输入Token成本降低多达75%。对于运行1,000个并发AI推理管道的企业来说,这意味着每天可节省多达80,000美元的GPU成本——当乘以数千次交互和24/7运营时,这是一个惊人的数字。"
DDN首席执行官兼联合创始人Alex Bouzari表示:"在AI领域,速度不仅关乎性能,更关乎经济效益。DDN使组织能够在AI管道的每个步骤中更快、更智能、更具成本效益地运营。"
目前尚不清楚DDN的实施方案与Hammerspace、VAST Data和WEKA的解决方案相比如何,因为比较基准测试尚未公开。我们推测,随着KV缓存成为基本要求,Cloudian、戴尔、IBM、HPE、日立万塔拉、NetApp、PEAK:AIO和Pure Storage等供应商将使用英伟达的Dynamo卸载引擎添加KV缓存支持。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。