Iceberg正在成为数据湖表格式的通用语言,StarTree是最新将其作为实时后端采用的供应商。
开源的Iceberg是一个面向大规模分析的开放表格式,它本身不像传统数据库那样存储或执行查询。它作为一个软件层运行在存储系统之上,如Parquet、ORC和Avro,以及云对象存储如AWS S3、Azure Blob和Google Cloud Store,处理元数据、分区和模式演进。Iceberg提供ACID事务、模式版本控制和时间旅行功能,数据查询和处理由单独的软件处理,如Apache Flink、Presto、Spark、Trino和其他分析引擎。
StarTree Cloud是基于Apache Pinot构建的完全托管的云原生平台,Apache Pinot是一个实时分布式OLAP(在线分析处理)数据存储。StarTree Cloud专为OLAP设计,能够对来自流式数据源(如Apache Kafka、Amazon Kinesis)和批处理数据源(如AWS S3、Snowflake)的大规模数据进行低延迟查询(毫秒级)和高吞吐量处理(每秒10,000+查询)。现在它既可以作为Iceberg之上的分析层,也可以作为服务层。
StarTree声称,Iceberg支持可以将其从被动存储格式转变为实时后端,能够为面向客户的应用程序和智能体提供支持,在高并发情况下为数千名同时用户提供一致的速度和可靠性服务。
StarTree联合创始人兼首席执行官Kishore Gopalakrishna表示:"我们看到面向客户,以及日益面向智能体的数据产品出现爆炸性增长,这些产品要求亚秒级响应和新鲜见解。与此同时,Iceberg正在成为大规模管理历史数据的行业标准。"
"随着这两个趋势的融合,StarTree通过作为Iceberg的实时服务层提供独特价值,使公司能够安全、可扩展地为数百万外部用户和智能体提供服务,而无需移动数据。"
最近采用Iceberg的厂商包括Snowflake、Confluent、AWS的S3、SingleStore和Databricks。
theCUBE Research首席分析师Paul Nashawaty表示:"Apache Iceberg正在迅速成为在开放数据湖仓中管理大规模分析数据的事实标准——根据theCUBE Research的数据,采用率同比激增超过60%。"
StarTree断言,大多数围绕Iceberg和Parquet构建的现有查询引擎难以满足面向外部、高并发分析应用程序所需的性能SLA,公司历史上一直避免直接从其湖仓提供数据服务。它声称通过结合Iceberg和Parquet开放表格式与Pinot的索引和高性能服务能力,StarTree直接在原生Iceberg表上提供实时查询加速。
与Presto、Trino和类似引擎不同,StarTree表示它专为低延迟、高并发访问而构建,直接与Iceberg集成,通过以下功能提升性能:
StarTree Cloud对Apache Iceberg和Parquet的原生支持
实时索引和聚合,包括对数值、文本、JSON和地理索引的支持
通过StarTree索引实现智能物化视图
用于低延迟、高并发查询的本地缓存和修剪
无需数据移动——直接从Iceberg提供服务
从Iceberg进行智能预取,最大限度减少无关数据扫描
Nashawaty认为:"StarTree以亚秒级延迟服务Iceberg数据且无需数据重复的能力是一个独特而及时的进步。它解决了在现代数据产品中访问历史数据的关键性能需求。"
StarTree Cloud对Apache Iceberg的支持今天已在私有预览版中提供。更多信息请访问www.startree.ai。
好文章,需要你的鼓励
苏州大学研究团队提出"语境降噪训练"新方法,通过"综合梯度分数"识别长文本中的关键信息,在训练时强化重要内容、抑制干扰噪音。该技术让80亿参数的开源模型在长文本任务上达到GPT-4o水平,训练效率比传统方法高出40多倍。研究解决了AI处理长文档时容易被无关信息干扰的核心问题,为文档分析、法律研究等应用提供重要突破。
在Cloudera的“价值观”中,企业智能化的根基可以被概括为两个字:“源”与“治”——让数据有源,智能可治。
清华大学团队首次揭示了困扰AI训练领域超过两年的"幽灵故障"根本原因:Flash Attention在BF16精度下训练时会因数字舍入偏差与低秩矩阵结构的交互作用导致训练崩溃。研究团队通过深入分析发现问题源于注意力权重为1时的系统性舍入误差累积,并提出了动态最大值调整的解决方案,成功稳定了训练过程。这项研究不仅解决了实际工程问题,更为分析类似数值稳定性挑战提供了重要方法论。