Iceberg正在成为数据湖表格式的通用语言,StarTree是最新将其作为实时后端采用的供应商。
开源的Iceberg是一个面向大规模分析的开放表格式,它本身不像传统数据库那样存储或执行查询。它作为一个软件层运行在存储系统之上,如Parquet、ORC和Avro,以及云对象存储如AWS S3、Azure Blob和Google Cloud Store,处理元数据、分区和模式演进。Iceberg提供ACID事务、模式版本控制和时间旅行功能,数据查询和处理由单独的软件处理,如Apache Flink、Presto、Spark、Trino和其他分析引擎。
StarTree Cloud是基于Apache Pinot构建的完全托管的云原生平台,Apache Pinot是一个实时分布式OLAP(在线分析处理)数据存储。StarTree Cloud专为OLAP设计,能够对来自流式数据源(如Apache Kafka、Amazon Kinesis)和批处理数据源(如AWS S3、Snowflake)的大规模数据进行低延迟查询(毫秒级)和高吞吐量处理(每秒10,000+查询)。现在它既可以作为Iceberg之上的分析层,也可以作为服务层。
StarTree声称,Iceberg支持可以将其从被动存储格式转变为实时后端,能够为面向客户的应用程序和智能体提供支持,在高并发情况下为数千名同时用户提供一致的速度和可靠性服务。
StarTree联合创始人兼首席执行官Kishore Gopalakrishna表示:"我们看到面向客户,以及日益面向智能体的数据产品出现爆炸性增长,这些产品要求亚秒级响应和新鲜见解。与此同时,Iceberg正在成为大规模管理历史数据的行业标准。"
"随着这两个趋势的融合,StarTree通过作为Iceberg的实时服务层提供独特价值,使公司能够安全、可扩展地为数百万外部用户和智能体提供服务,而无需移动数据。"
最近采用Iceberg的厂商包括Snowflake、Confluent、AWS的S3、SingleStore和Databricks。
theCUBE Research首席分析师Paul Nashawaty表示:"Apache Iceberg正在迅速成为在开放数据湖仓中管理大规模分析数据的事实标准——根据theCUBE Research的数据,采用率同比激增超过60%。"
StarTree断言,大多数围绕Iceberg和Parquet构建的现有查询引擎难以满足面向外部、高并发分析应用程序所需的性能SLA,公司历史上一直避免直接从其湖仓提供数据服务。它声称通过结合Iceberg和Parquet开放表格式与Pinot的索引和高性能服务能力,StarTree直接在原生Iceberg表上提供实时查询加速。
与Presto、Trino和类似引擎不同,StarTree表示它专为低延迟、高并发访问而构建,直接与Iceberg集成,通过以下功能提升性能:
StarTree Cloud对Apache Iceberg和Parquet的原生支持
实时索引和聚合,包括对数值、文本、JSON和地理索引的支持
通过StarTree索引实现智能物化视图
用于低延迟、高并发查询的本地缓存和修剪
无需数据移动——直接从Iceberg提供服务
从Iceberg进行智能预取,最大限度减少无关数据扫描
Nashawaty认为:"StarTree以亚秒级延迟服务Iceberg数据且无需数据重复的能力是一个独特而及时的进步。它解决了在现代数据产品中访问历史数据的关键性能需求。"
StarTree Cloud对Apache Iceberg的支持今天已在私有预览版中提供。更多信息请访问www.startree.ai。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。