无论OpenAI的新开放权重模型性能如何,其采用的相对较新的数据类型MXFP4可能更为重要,尤其是如果这种技术在OpenAI的竞争对手中得到推广的话。
相比大语言模型传统使用的数据类型,MXFP4格式承诺能够大幅节省计算成本,允许云服务提供商或企业仅用四分之一的硬件来运行模型。
**什么是MXFP4?**
如果你从未听说过MXFP4,这是因为虽然它已经开发了一段时间,但OpenAI的gpt-oss模型是首批利用这一技术的主流大语言模型之一。
MXFP4是由开放计算项目(OCP)定义的4位浮点数据类型。OCP是由Facebook于2011年发起的超大规模数据中心联盟,旨在让数据中心组件更便宜、更易获得。具体来说,MXFP4是一种微缩放块浮点格式,因此名称是MXFP4而不是简单的FP4。
这种微缩放功能相当重要,因为FP4本身无法提供太多精度。仅有四位——一位符号位、两位指数位和一位尾数位——它只能表示16个不同的值:8个正值和8个负值。相比之下,BF16可以表示65,536个值。
通过巧妙的数学运算,MXFP4能够表示更广泛的数值范围。MXFP4量化的工作原理是取一个高精度值块(默认为32个),并用8位二进制指数形式的公共缩放因子对其进行乘法运算。
在推理过程中,这些数值会通过将其4位浮点值的倒数与缩放因子相乘来实时反量化。虽然仍会遇到舍入误差,但精度仍比标准FP4高得多。
**MXFP4的重要性**
MXFP4之所以重要,是因为权重越小,运行模型所需的显存、内存带宽和计算量就越少。换句话说,MXFP4让生成式AI变得更加便宜。
与目前大语言模型最常用的数据类型BF16相比,MXFP4可将计算和内存需求减少约75%。根据gpt-oss模型卡片,OpenAI对约90%的模型权重应用了MXFP4量化。这使得他们能够将1200亿参数的模型装入仅有80GB显存的GPU中,或将200亿参数的较小版本装入仅有16GB内存的GPU中。
通过将gpt-oss量化为MXFP4,该大语言模型不仅比同等规模的BF16训练模型占用的内存少4倍,Token生成速度也可以提升4倍。
**OpenAI引领潮流**
量化并不是新概念。模型开发者已经发布FP8甚至4位量化版本的模型有一段时间了。然而,这些量化版本通常被视为一种妥协,因为较低的精度必然伴随着质量损失。
研究反复表明,对于大语言模型而言,从16位降到8位的质量损失基本可以忽略不计。事实上,一些模型构建者如DeepSeek已经开始原生使用FP8训练模型。
虽然MXFP4比标准FP4好得多,但它并不一定是万能的解决方案。英伟达认为,该数据类型与FP8相比仍可能出现质量下降,部分原因是其32值块大小不够精细。为解决这个问题,这家GPU巨头推出了自己的微缩放数据类型NVFP4,旨在通过使用16值块和FP8缩放因子来提高质量。
对于gpt-oss,OpenAI已经做出了选择。没有BF16或FP8版本的模型,只有MXFP4版本。鉴于OpenAI在市场中的重要地位,他们基本上在说:如果MXFP4对我们来说足够好,那对你们也应该足够好。
这无疑是为负责服务这些模型的基础设施提供商带来的好消息。在那之前,OpenAI可以宣传其开放模型比其他人的模型更容易运行,以及如何利用支持FP4数据类型的英伟达和AMD新芯片。
Q&A
Q1:MXFP4数据类型是什么?它有什么优势?
A:MXFP4是由开放计算项目定义的4位浮点数据类型,是一种微缩放块浮点格式。相比大语言模型传统使用的BF16数据类型,MXFP4可将计算和内存需求减少约75%,让生成式AI运行成本大幅降低,同时Token生成速度可提升4倍。
Q2:OpenAI的gpt-oss模型为什么只提供MXFP4版本?
A:OpenAI在gpt-oss模型中只提供MXFP4版本,没有BF16或FP8版本。鉴于OpenAI在市场中的重要地位,他们通过这种做法向业界传达信息:如果MXFP4对OpenAI来说足够好,那对其他人也应该足够好,从而推动这一技术标准的普及。
Q3:使用MXFP4会不会影响模型质量?
A:虽然较低精度通常伴随质量损失,但研究表明从16位降到8位的质量损失基本可以忽略不计。MXFP4虽然比标准FP4好得多,但与FP8相比仍可能出现一定的质量下降,这主要是因为其32值块大小不够精细造成的。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。