GPU租赁服务商CoreWeave在周三继续其AI服务领域的扩张,推出了一个旨在让企业客户更容易获得强化学习技术的平台。
强化学习是机器学习的一种方法,模型通过试错来自我学习,对积极结果给予奖励,对消极结果进行惩罚。在过去一年中,这种方法作为微调语言模型的手段越来越受欢迎。例如,DeepSeek R1的"推理"能力就是通过强化学习实现的。
CoreWeave周三推出的无服务器强化学习平台建立在其最近收购的两家公司基础上:专门使用强化学习构建定制AI智能体的OpenPipe,以及提供GPU加速工作负载无服务器平台的Weights & Biases。
在这种情况下,无服务器架构很有意义,因为工作负载可以分布在可用的空闲或未充分利用的GPU上,消除资源闲置。此外,许多AI工作负载本质上是无状态的,这意味着它们不需要存储先前会话的信息就能工作。
根据CoreWeave的说法,这消除了客户手动配置虚拟机或裸机服务器来使用强化学习构建定制AI智能体的需要。相反,他们只需为微调过程中生成的Token付费。
如果CoreWeave的说法可信,这种方法比使用本地托管的英伟达H100快约1.4倍,成本降低约40%。
目前,CoreWeave通过Weights & Biases平台提供这项服务。然而,展望未来,这家新兴云服务商旨在将其AI服务业务扩展到新领域。
就在本周,该公司宣布收购Monolith AI,这家公司专门从事不同类型的AI。与生成式模型不同,Monolith使用AI来加速传统上属于高性能计算的物理和工程仿真。
CoreWeave进军AI服务业务是其更广泛努力的一部分,旨在实现客户群多样化。无论好坏,其客户群一直由大型超大规模云服务商、云提供商和模型构建者主导。当该公司今年早些时候申请上市时,在其IPO招股说明书中警告称,2024年收入的77%来自两个客户,没有任何其他单一客户贡献超过10%的收入。现在情况可能没那么严峻,谷歌和IBM都是其客户,但尽管如此,对于这家负债累累的公司来说,多样化仍然至关重要。
Q&A
Q1:CoreWeave的无服务器强化学习平台有什么优势?
A:该平台消除了客户手动配置虚拟机或裸机服务器的需要,用户只需为微调过程中生成的Token付费。工作负载可以分布在可用的空闲GPU上,避免资源浪费,比使用本地英伟达H100快约1.4倍,成本降低约40%。
Q2:强化学习在AI领域有什么应用?
A:强化学习是一种机器学习方法,模型通过试错自我学习,对积极结果奖励,对消极结果惩罚。目前主要用于微调语言模型,例如DeepSeek R1的推理能力就是通过强化学习实现的,在过去一年中越来越受欢迎。
Q3:CoreWeave为什么要推出AI服务业务?
A:CoreWeave希望实现客户群多样化。根据其IPO招股说明书,2024年收入的77%来自两个客户,过度依赖大型超大规模云服务商、云提供商和模型构建者。作为一家负债累累的公司,多样化对其发展至关重要。
好文章,需要你的鼓励
PDF协会在欧洲会议上宣布,将在PDF规范中添加对JPEG XL图像格式的支持。尽管Chromium团队此前将该格式标记为过时,但此次纳入可能为JXL带来主流应用机会。PDF协会CTO表示,选择JPEG XL作为支持HDR内容的首选解决方案。该格式具备广色域、超高分辨率和多通道支持等优势,但目前仍缺乏广泛的浏览器支持。
Meta研究团队发现仅仅改变AI示例间的分隔符号就能导致模型性能产生高达45%的巨大差异,甚至可以操纵AI排行榜排名。这个看似微不足道的格式选择问题普遍存在于所有主流AI模型中,包括最先进的GPT-4o,揭示了当前AI评测体系的根本性缺陷。研究提出通过明确说明分隔符类型等方法可以部分缓解这一问题。
Ironclad OS项目正在开发一个新的类Unix操作系统内核,面向小型嵌入式系统,计划支持实时功能。该项目的独特之处在于采用Ada编程语言及其可形式化验证的SPARK子集进行开发,而非常见的C、C++或Rust语言。项目还包含运行在Ironclad内核上的完整操作系统Gloire,使用GNU工具构建以提供传统Unix兼容性。
香港中文大学研究团队开发出CALM训练框架和STORM模型,通过轻量化干预方式让40亿参数小模型在优化建模任务上达到6710亿参数大模型的性能。该方法保护模型原生推理能力,仅修改2.6%内容就实现显著提升,为AI优化建模应用大幅降低了技术门槛和成本。