新冠肺炎疫情为餐饮和快餐行业带来了巨大压力。据美国国家餐馆协会(National Restaurant Association)的一项研究显示,在疫情发生后的一个月内,有3%的餐厅永久关闭,另有11%的餐厅预计将在接下来的一个月内关闭。在高档、中档和休闲餐饮机构受到了主要冲击的同时,快餐行业也未能幸免。Datassential的一项调查发现,在疫情爆发的前几周,快餐公司的销售额下跌42%。
随着越来越多的顾客开始依赖外卖和汽车穿梭餐厅点餐,而非在室内用餐,汉堡王等快餐零售商进而寻求人工智能和机器学习的帮助来解决问题。基于此,汉堡王与英特尔合作,开发出了一款人工智能系统——当顾客需要点餐时,该系统可以通过菜单屏幕为他们推荐食物。这个系统还可以推测顾客想要点热饮还是冷饮、轻食还是大餐,从而节省时间并提升顾客体验。
汉堡王和英特尔透露,这一解决方案目前已经在超过1000家汉堡王门店进行了试用。
然而汉堡王并不是第一家尝试在客户服务中使用人工智能的快餐连锁店。自2019年收购科技公司Dynamic Yield以来,麦当劳一直在其汽车穿梭餐厅中采用人工智能技术。甜甜圈连锁品牌唐恩都乐(Dunkin’ Donuts)也正在对汽车穿梭餐厅进行测试,当顾客减速停下时就能够识别出其是否为忠实会员。一些Sonic汽车影院近期也安装了人工智能菜单信息亭。Chick-fil-A正在利用人工智能从社交媒体上的帖子中识别食源性疾病的迹象。
汉堡王全球数据平台开发和机器学习总监王路洋向VentureBeat介绍道,与电子商务等行业相比,快餐推荐有自己独特的挑战。没有什么简单的方法可以识别客户并检索到他们的档案,因为所有食物推荐都是在线下完成的。此外,在把位置、上下文特征加载到模型之前,必须对它们进行预处理。
为了应对这些挑战,Transformer Cross Transformer (TxT)人工智能推荐系统应运而生。该系统采用了所谓的“双”Transformer架构,既能够学习实时订单序列数据,也能够学习位置、天气和订单行为等特征。TxT可以利用餐馆中所有可用的数据点,而无需在接单流程开始之前识别顾客。例如,如果顾客在其购物车内加入的第一款商品是奶昔,那么这将影响TxT的推荐,这些推荐基于顾客过去购买的商品、当下购买的商品以及商店售卖的商品。
TxT在Analytics Zoo (这是由英特尔开发并开源的大数据分析+AI平台)上开发。其中,英特尔和汉堡王合作创建了一个端到端推荐流水线,包括分布式Apache Spark数据处理和在英特尔至强集群上进行的Apache MXNet训练;TxT还借助Analytics Zoo平台的RayOnSpark库进行部署,让企业能够直接在现有集群上运行程序。
王路洋表示,TxT已经带来了一些令人惊讶的销售洞察,发现汉堡王的顾客在任何天气都会点奶昔——即使天气很冷。而当人们把高热量食物而非低热量食物加入购物车时,他们更愿意再点一份甜点。
王路洋说:“汉堡王一直致力于改善顾客体验。TxT人工智能推荐系统可以让汉堡王更深入地了解顾客习惯,并从根本上更充分地与顾客进行沟通。”
好文章,需要你的鼓励
英特尔携手戴尔以及零克云,通过打造“工作站-AI PC-云端”的协同生态,大幅缩短AI部署流程,助力企业快速实现从想法验证到规模化落地。
意大利ISTI研究院推出Patch-ioner零样本图像描述框架,突破传统局限实现任意区域精确描述。系统将图像拆分为小块,通过智能组合生成从单块到整图的统一描述,无需区域标注数据。创新引入轨迹描述任务,用户可用鼠标画线获得对应区域描述。在四大评测任务中全面超越现有方法,为人机交互开辟新模式。
阿联酋阿布扎比人工智能大学发布全新PAN世界模型,超越传统大语言模型局限。该模型具备通用性、交互性和长期一致性,能深度理解几何和物理规律,通过"物理推理"学习真实世界材料行为。PAN采用生成潜在预测架构,可模拟数千个因果一致步骤,支持分支操作模拟多种可能未来。预计12月初公开发布,有望为机器人、自动驾驶等领域提供低成本合成数据生成。
MIT研究团队发现,AI系统无需严格配对的多模态数据也能显著提升性能。他们开发的UML框架通过参数共享让AI从图像、文本、音频等不同类型数据中学习,即使这些数据间没有直接对应关系。实验显示这种方法在图像分类、音频识别等任务上都超越了单模态系统,并能自发发展出跨模态理解能力,为未来AI应用开辟了新路径。