

就在刚刚,xAI正式发布3140亿参数混合专家模型Grok-1的权重和架构。

3140亿的参数,让Grok-1成为迄今参数量最大的开源LLM,是Llama 2的4倍。

目前,xAI关于Grok-1没有透露更多信息。
官网放出的信息如下——
- 基础模型在大量文本数据上训练,未针对任何特定任务进行微调。
- 314B参数的MoE,有25%的权重在给定token上处于激活状态。
- 2023年10月,xAI使用JAX和Rust之上的自定义训练堆栈从头开始训练。
一经上线GitHub,Grok就狂揽了6k星,586个Fork。

项目地址:https://github.com/xai-org/grok-1
马斯克还不忘嘲讽OpenAI一番,「告诉我们更多关于OpenAI的「open」部分...」

纽约时报点评道,开源Gork背后的原始代码,是这个世界上最富有的人控制AI未来战斗的升级。

开源究竟会让技术更安全,还是会让它更滥用?
「开源支持者」马斯克,以身作则地卷入了AI界的这场激烈辩论,并用行动给出了答案。
小扎刚刚也对Grok做出了评价,「并没有给人留下真正深刻的印象,3140亿参数太多了,你需要一堆H100,不过我已经买下了」。

一条磁力链,全球首个最大模型开源
pip install -r requirements.txtpython run.py
这个脚本会在测试输入上,加载checkpoint和模型中的样本。
magnet:?xt=urn:btih:5f96d43576e3d386c9ba65b883210a393b68210e&tr=https%3A%2F%2Facademictorrents.com%2Fannounce.php&tr=udp%3A%2F%2Ftracker.coppersurfer.tk%3A6969&tr=udp%3A%2F%2Ftracker.opentrackr.org%3A1337%2Fannounce




- tokenizer词汇量:131,072(于GPT-4类似)相当于2^17
- 嵌入大小:6144(48*128)
- Transformer层:64(每一层都有一个解码层:多头注意块和密度块)

密集块(密集前馈块):
- 宽度因子(Widening Factor):8

- 上下文长度:8192个token


网友:开源争霸战要来
AI社区已经沸腾了!
技术界指出,Grok的亮点是在前向反馈层中使用了GeGLU以及归一化方法,并且使用了有趣的三明治范式技术(sandwich norm technique)。
连OpenAI的员工,都表示了自己对Grok的强烈兴趣。









马斯克为何选择开源?
在数次嘲讽OpenAI是「CloseAI」之后,马斯克果真选择了开源自家大模型。




好文章,需要你的鼓励
Anthropic发布SCONE-bench智能合约漏洞利用基准测试,评估AI代理发现和利用区块链智能合约缺陷的能力。研究显示Claude Opus 4.5等模型可从漏洞中获得460万美元收益。测试2849个合约仅需3476美元成本,发现两个零日漏洞并创造3694美元利润。研究表明AI代理利用安全漏洞的能力快速提升,每1.3个月翻倍增长,强调需要主动采用AI防御技术应对AI攻击威胁。
NVIDIA联合多所高校开发的SpaceTools系统通过双重交互强化学习方法,让AI学会协调使用多种视觉工具进行复杂空间推理。该系统在空间理解基准测试中达到最先进性能,并在真实机器人操作中实现86%成功率,代表了AI从单一功能向工具协调专家的重要转变,为未来更智能实用的AI助手奠定基础。
Spotify年度总结功能回归,在去年AI播客功能遭遇批评后,今年重新专注于用户数据深度分析。新版本引入近十项新功能,包括首个实时多人互动体验"Wrapped Party",最多可邀请9位好友比较听歌数据。此外还新增热门歌曲播放次数显示、互动歌曲测验、听歌年龄分析和听歌俱乐部等功能,让年度总结更具互动性和个性化体验。
这项研究解决了现代智能机器人面临的"行动不稳定"问题,开发出名为TACO的决策优化系统。该系统让机器人在执行任务前生成多个候选方案,然后通过伪计数估计器选择最可靠的行动,就像为机器人配备智能顾问。实验显示,真实环境中机器人成功率平均提升16%,且系统可即插即用无需重新训练,为机器人智能化发展提供了新思路。