传统云计算及相应算法产生的数据流基本为占用内存小、波动范围小的流量,因此虽然网络为非全局路由,按照既定策略为流量分配路径也不会过多出现拥塞;AI 计算产生的数据流中大象流(Elephant Flow)显著增加,对于少数被分配较多大象流的路径,其传输时间将显著高于大部分路径,这就会产生“长尾效应”,大部分路径传输完成后闲置等待少数路径完成传输,系统利用率因此打折扣。
不同计算进程间数据共接收端,容易出现“受害者流量”。AI 推理集群必然会出现多个负载处理多个用户需求或多条并发请求的情况,不同负载由不同端口输出数据,传输路径上有共用的叶、脊交换机,则共接收端的“多传一”(Many-To-One)现象容易出现网络背压、拥塞传播甚至丢包。
例如下图中,负载 A 由网卡 1、2、3 输出的路径与负载 B 由网卡 4 输出的路径共用交换机 a,且路径 3 与路径 4 共用交换机 b,在常规网络架构下,路径 1、2、3 均按最大带宽连接交换机 a,交换机 a 处出现拥塞,网路背压导致连接交换机 b 的路径也出现拥塞,路径 4 数据流的稳态带宽受到影响,成为“受害者流量”(Victim Flow)。
RDMA 网络如何解决潜在问题?“自适应路由”基于网卡及交换机,可解决“大象流”带来的长尾效应。
1)交换机根据各端口数据输出队列状态判断该端口的负荷情况,并将新数据路由至当前负荷最小的端口/路径,这样可有效实现各端口负载均衡;
2)重新路由后的数据一般会按照与原序列不同的顺序到达网卡,网卡利用 DDP 协议(数据报文中的 DDP 前缀包含识别数据原存储位置的信息)将接收到的数据按照原顺序存放。针对 AI 计算中显著增加的“大象流”,自适应路由通过动态监控各端口传输负荷并按此分配路径,均衡负载,解决长尾问题。
交换机拥塞控制算法+缓存池化实现性能隔离。1)各节点交换机实时监控传输速率及拥塞程度,由交换机芯片接收处理该节点及相邻节点的检测数据,并基于拥塞控制算法调节各相关交换机的传输速率;2)交换机将物理缓存池化,根据不同端口的接收、传输速率分配缓存。
芯片支持容量提升,增加 RoCE 配套功能。交换机芯片支持的容量迭代提升是必然趋势,博通 Tomahawk 5 总容量达 51.2T,支持 64 个端口单口带宽达 800G,相比上代翻倍,英伟达 Spectrum-X800 交换机总容量 51.2T、端口 64 个,分别是上一代的 4 倍和两倍;同时前一章中提到 RoCE 实现的自适应路由、拥塞控制及缓存池化分配等功能均需要交换机、网卡软硬件支持。
RoCE 带来更多软件客制化可能,白盒交换机有望进一步渗透。白盒交换机采用开放式网络交换架构,将商用硬件与开源软件操作系统相结合,以实现更灵活的网络配置和管理。RoCE 网络中的硬件升级以实现自适应路由、拥塞控制等功能,同时云厂商亦可根据自身硬件特性、需求和痛点自行开发相应功能的算法及软件,白盒交换机在软硬件上的发挥空间进一步扩展。
好文章,需要你的鼓励
OpenAI首席执行官Sam Altman表示,鉴于投资者的AI炒作和大量资本支出,我们目前正处于AI泡沫中。他承认投资者对AI过度兴奋,但仍认为AI是长期以来最重要的技术。ChatGPT目前拥有7亿周活跃用户,是全球第五大网站。由于服务器容量不足,OpenAI无法发布已开发的更好模型,计划在不久的将来投资万亿美元建设数据中心。
阿里巴巴团队提出FantasyTalking2,通过创新的多专家协作框架TLPO解决音频驱动人像动画中动作自然度、唇同步和视觉质量的优化冲突问题。该方法构建智能评委Talking-Critic和41万样本数据集,训练三个专业模块分别优化不同维度,再通过时间步-层级自适应融合实现协调。实验显示全面超越现有技术,用户评价提升超12%。
英伟达推出新的小型语言模型Nemotron-Nano-9B-v2,拥有90亿参数,在同类基准测试中表现最佳。该模型采用Mamba-Transformer混合架构,支持多语言处理和代码生成,可在单个A10 GPU上运行。独特的可切换推理功能允许用户通过控制令牌开启或关闭AI推理过程,并可管理推理预算以平衡准确性和延迟。模型基于合成数据集训练,采用企业友好的开源许可协议,支持商业化使用。
UC Berkeley团队提出XQUANT技术,通过存储输入激活X而非传统KV缓存来突破AI推理的内存瓶颈。该方法能将内存使用量减少至1/7.7,升级版XQUANT-CL更可实现12.5倍节省,同时几乎不影响模型性能。研究针对现代AI模型特点进行优化,为在有限硬件资源下运行更强大AI模型提供了新思路。