数字经济是以数字化的知识和信息作为关键生产要素,以数字技术为核心驱动力量,以现代信息网络为重要载体,通过数字技术与实体经济深度融合,不断提高经济社会的数字化、网络化、智能化水平,加速重构经济发展与治理模式的新型经济形态。
具体包括四大部分:一是数字产业化,即信息通信产业,具体包括电子信息制造业、电信业、软件和信息技术服务业、互联网行业等;
二是产业数字化,即传统产业应用数字技术所带来的产出增加和效率提升部分,包括但不限于工业互联网、智能制造、车联网、平台经济等融合型新产业新模式新业态;
三是数字化治理,包括但不限于多元治理,以“数字技术+治理”为典型特征的技管结合,以及数字化公共服务等;
四是数据价值化,包括但不限于数据采集、数据标准、数据确权、数据标注、数据定价、数据交易、数据流转、数据保护等。
以下是《中国数字经济发展研究报告》的部分内容:
好文章,需要你的鼓励
来自香港科技大学和MiniMax的研究团队开发了SynLogic,一个可合成35种逻辑推理任务的框架与数据集,填补了AI逻辑训练资源缺口。研究表明,在SynLogic上进行强化学习训练显著提升了模型逻辑推理能力,32B模型在BBEH测试中超越了DeepSeek-R1-Distill模型6个百分点。更值得注意的是,将SynLogic与数学和编程数据混合训练不仅提高了这些领域的学习效率,还增强了模型的泛化能力,表明逻辑推理是构建通用AI推理能力的重要基础。
这项研究揭示了大型语言模型的惊人能力:只需两个特殊训练的向量,冻结的语言模型就能在一次计算中生成数百个准确词汇,而非传统的逐词生成。研究者发现,这种能力要求特定的输入排列方式,且生成速度比自回归方法快约279倍。这一发现不仅展示了语言模型未被充分探索的并行生成潜力,还为快速文本重建开辟了新方向。
腾讯混元团队提出的"ConciseR"是一种通过两阶段强化学习实现大模型简洁推理的新方法。研究遵循"先走后跑"原则,先确保模型具备准确推理能力,再优化输出简洁性。第一阶段通过改进的群体相对策略优化(GRPO++)提升推理能力,第二阶段通过长度感知的群体相对策略优化(L-GRPO)减少输出长度。实验结果显示,该方法在AIME、MATH-500等多个基准测试中既减少了输出长度(平均20%以上),又保持或提高了准确率,展现出高效率-高准确率的理想平衡。
这项由香港科技大学团队开展的研究首次全面评估了压缩对大语言模型Agent能力的影响。研究发现,虽然4位量化能较好地保留工作流生成和工具使用能力(仅下降1%-3%),但在实际应用中性能下降达10%-15%。团队提出的ACBench基准测试横跨工具使用、工作流生成、长文本理解和实际应用四大能力,评估了不同压缩方法对15种模型的影响。结果显示,AWQ量化效果最佳,蒸馏模型在Agent任务上表现不佳,大型模型对压缩更具韧性。研究还提出ERank等创新分析方法,为实际部署提供了切实指导。