当前,各行各业正处于双轨转型过程(数字化转型和绿色转型)中,产品和流程的碳足迹已成为一种新货币。由于可以访问数据,AI会成为将经验流程知识转化为预测性解决方案的关键使能器。这些解决方案将为客户和相关价值链节省成本。
在钢铁和橡胶等较为传统的行业,为预测性和规范性AI创建模型仍旧任重而道远。随着时间的推移,经验会不断积累。这是因为前端流程中的过程数据仍然缺失,需要传感器集成来生成这些数据,这也是棕地更新的目标。
传统制造业的用例面临更多的挑战和瓶颈,因为它们:
与用于大规模AI解决方案训练的数据集相比,有关工业流程的数据和信息更为稀缺。此外,数据集属于工业企业财产,往往不易获得。
欧洲目前的研发计划(GAIA-X、Catena-X、Manufacturing-X)正致力于通过资助制造业的数字化转型来解决其中的一些问题。欧洲议会于2022年4月6日通过的《数据治理法》旨在促进欧盟境内的数据共享,从而使公司和初创企业能够获得更多数据,用于开发新产品和服务。只有当利益相关方和用户能够访问大数据时,人工智能的潜力才能得到充分发挥。
以下是《GIO白皮书》部分内容:
好文章,需要你的鼓励
当AI遇到空间推理难题:最新研究揭示GPT-4等顶尖模型在传送门解谜和立体拼图中集体"挂科",复杂智能远比我们想象的更难实现。
这项研究首次系统评估了AI代码智能体在科学研究扩展方面的能力。研究团队设计了包含12个真实研究任务的REXBENCH基准,测试了九个先进AI智能体的表现。结果显示,即使最优秀的智能体成功率也仅为25%,远低于实用化要求,揭示了当前AI在处理复杂科学推理任务时的显著局限性。
2025施耐德电气智算峰会上,全新EcoStruxure(TM) Energy Operation电力综合运营系统正式亮相,定位场站级智慧能源管理中枢,集技术领先性与本土适配性于一体。
俄罗斯莫斯科国立大学研究团队开发出MEMFOF光流估计新方法,在保持顶尖精度的同时将1080p视频分析的GPU内存消耗从8GB降至2GB,实现约4倍内存节省。该方法通过三帧策略、相关性体积优化和高分辨率训练在多个国际基准测试中取得第一名成绩,为高清视频分析技术的普及奠定基础。