智算中心的发展基于最新人工智能理论和领先的人工智能计算架构,当前算法模型的发展趋势以Al大模型为代表,算力技术与算法模型是其中的核心关键,算力技术以Al芯片、Al服务器、Al集群为载体。
GPU主宰算力芯片,Al信创驱动国产算力发展:得益于硬件支持与软件编程、设计方面的优势,CPU+GPU成为了目前应用最广泛的平台。Al分布式计算的市场主要由算力芯片(55-75%)、内存(10-20%)和互联设备(10-20%)三部分组成。
由于ChatGPT的爆火,GPU需求明显,英伟达也加大对三星和SK海力士HBM3的订单。2023年10月,SK海力士表示,已经在2023年出售了明年HBM3和HBM3E的所有产量。据Omdia预测,到2025年,HBM市场的总收入将达到25亿美元。
集成算力与存力,先进封装产能紧缺:CoWoS封装技术是目前集成HBM与CPU/GPU处理器的主流方案。台积电主导全球CoWoS封装市场。据IDC预测,全球CoWoS供需缺口约20%,2024年台积电的CoWos封装产能将较2023年提升一倍,2.5D/3D先进封装市场规模在2023-2028年将以22%的CAGR高速增长。
Al算力对高效电源提出新需求,背面供电技术蓄势待发:越来越高度化的集成会造成针对加速芯片的电源解决方案越来越复杂,方案需要不同电压、不同路的多路输入,这种情况下电压轨会越来越多。
台积电、三星、英特尔等芯片大厂都在积极布局背面供电网络技术,为日益复杂的芯片提供高效供电方案,其中英特尔较为领先。
好文章,需要你的鼓励
人工智能领域正在通过改进模型工作方式来释放新功能。研究人员开发了一种名为"SVDquant"的4位量化系统,可以使扩散模型运行速度提高3倍,同时提升图像质量和兼容性。这种技术通过压缩参数和激活值来大幅降低内存和处理需求,为资源受限的系统带来新的可能性。
Meta公司开发了一种机器学习模型SEAMLESSM4T,能够实现36种语言之间的近即时语音翻译。该模型采用创新方法,利用互联网音频片段避免了繁琐的数据标注。这一突破性技术有望简化多语言交流,但仍需解决噪音环境、口音等挑战,并关注技术可能带来的偏见问题。
生物制药行业正积极拥抱人工智能技术,大型企业投入巨资,小型公司谨慎布局。行业面临人才、数据和工作流程等挑战,但预计到2025年将在AI就绪度方面取得实质性进展。AI有望加速药物研发,提高效率,最终造福患者,重塑医疗保健的未来。
随着 AI 需求激增,数据中心行业面临严峻挑战。能源消耗激增威胁可持续发展目标,新项目遭遇公众反对。电力供应和分配方式亟需改革,行业或将迎来动荡的 2025 年。