近年来,随着个性化服务规模化需求的快速增长,人工智能 (AI) 已成为制药公司的关键竞争优势。然而,尽管这些先进技术前景广阔,许多医疗机构在有效实施和扩展这些解决方案时仍面临挑战。
这一挑战正是近期由 Trueblue 赞助的 pharmaphorum 网络研讨会"AI 在制药商业战略中的影响:从数据到实时洞察与行动"的焦点。
研讨会邀请了多位行业领袖参与,包括 Trueblue 战略与合作伙伴副总裁 Charm Legrand、Trueblue 首席商务官 Sergio Romoli、Microsoft 医疗与生命科学行业顾问 (EMEA) Andrew Graley,以及勃林格殷格翰全球医疗事务部全球洞察分析解决方案与战略负责人 Enric Sabata。会议围绕 AI 在推进制药行业发展中的三个核心主题展开讨论:应对采用挑战、推动个性化发展和利用数据进行决策。
技术转型的人性化考量
AI 潜力的核心在于每个公司都必须回答的一个问题:"作为一个组织,我们需要什么?"据 Romoli 介绍,这个问题对成功整合至关重要。
"我们从不为技术而技术,只有在看到客户价值时才会使用技术,"他解释道。
与会专家一致认为,在这个快速发展的行业中,价值是关键。围绕 AI 的炒作和争议十分复杂,决策者往往会因为种种不确定性而犹豫不决——投资回报不明确、组织抗拒以及对 AI 实际应用缺乏根本理解。然而,正如 Legrand 所强调的,这些并非技术问题,而是人的问题。
个性化:新的竞争前沿
传统的广泛营销方法正在迅速过时。医疗服务提供者现在通过多个平台互动,不仅需要有针对性的互动,还需要深度相关的互动。AI 通过分析过去的行为、偏好和互动模式,制作看似个性化的沟通内容,使这一切成为可能。
"尤其是生成式 AI 在推动规模化个性化方面发挥了重要作用,能够在多个渠道进行扩展,"Legrand 解释道。
数据:战略金矿
AI 的力量在于其能从复杂的数据环境中提取可行的洞察。从识别处方模式到优化供应链,甚至发现现有药物的潜在新疗法,可能性是非凡的。然而,这种潜力取决于强大的数据治理。
超越技术:整体方法
根据 Sabata 的经验,他提供了一个基础性观点:"永远不要将问题外包给 AI"——这有力地提醒我们,技术是为人类战略服务的,而不是相反。AI 应该增强明确定义的流程,而不是成为万能解决方案。
前进之路:战略创新
对于那些对采用 AI 持犹豫态度的组织来说,专家组的信息很明确:不要让对不完美的恐惧阻碍你前进。从实际应用开始,拥抱持续学习,将 AI 视为实现业务愿景的战略合作伙伴。
正如 Legrand 所解释的:"AI 是实现你的业务愿景的手段,而不是其替代品。"最成功的组织将是那些以战略性思维和持续学习承诺来对待 AI 的组织。
好文章,需要你的鼓励
上海交通大学研究团队开发出革命性AI癌症诊断系统,通过深度学习技术分析50万张细胞图像,实现94.2%的诊断准确率,诊断时间从30分钟缩短至2分钟。该系统不仅能识别多种癌症类型,还具备解释性功能,已在多家医院试点应用。研究成果发表于《Nature Communications》,展示了AI在精准医疗领域的巨大潜力。
南华理工大学等机构提出3DFlowAction方法,让机器人通过预测物体3D运动轨迹来学习操作技能。该研究创建了包含11万个实例的ManiFlow-110k数据集,构建了能预测三维光流的世界模型,实现了跨机器人平台的技能迁移。在四个复杂操作任务上成功率达70%,无需特定硬件训练即可在不同机器人上部署,为通用机器人操作技术发展开辟新路径。
这是首个系统性探索跨视角协作智能的综合性研究,由南京大学、东京大学等顶尖机构联合完成。研究团队首次将"第一人称视角"与"第三人称视角"的协作应用进行了全面梳理,提出了三大技术方向和十三个关键任务,涵盖从智能厨房到手术机器人的八大应用场景。这项突破性工作为人工智能向人类认知迈进提供了重要的技术路径和理论基础。
这项由台湾大学与微软研究团队合作的研究探索了使用音频感知大语言模型(ALLMs)作为自动评判员来评估语音生成模型的说话风格。研究设计了"语音风格指令跟随"和"角色扮演"两个任务,测试了四种语音模型的表现,并比较了人类与AI评判的一致性。结果表明,特别是Gemini-2.5-pro模型,其评判结果与人类评判的一致性甚至超过了人类评判者之间的一致性,证明ALLMs可以作为可靠的自动评估工具。同时研究也发现,即使是最先进的语音模型在说话风格控制方面仍有显著改进空间。