近年来,随着个性化服务规模化需求的快速增长,人工智能 (AI) 已成为制药公司的关键竞争优势。然而,尽管这些先进技术前景广阔,许多医疗机构在有效实施和扩展这些解决方案时仍面临挑战。
这一挑战正是近期由 Trueblue 赞助的 pharmaphorum 网络研讨会"AI 在制药商业战略中的影响:从数据到实时洞察与行动"的焦点。
研讨会邀请了多位行业领袖参与,包括 Trueblue 战略与合作伙伴副总裁 Charm Legrand、Trueblue 首席商务官 Sergio Romoli、Microsoft 医疗与生命科学行业顾问 (EMEA) Andrew Graley,以及勃林格殷格翰全球医疗事务部全球洞察分析解决方案与战略负责人 Enric Sabata。会议围绕 AI 在推进制药行业发展中的三个核心主题展开讨论:应对采用挑战、推动个性化发展和利用数据进行决策。
技术转型的人性化考量
AI 潜力的核心在于每个公司都必须回答的一个问题:"作为一个组织,我们需要什么?"据 Romoli 介绍,这个问题对成功整合至关重要。
"我们从不为技术而技术,只有在看到客户价值时才会使用技术,"他解释道。
与会专家一致认为,在这个快速发展的行业中,价值是关键。围绕 AI 的炒作和争议十分复杂,决策者往往会因为种种不确定性而犹豫不决——投资回报不明确、组织抗拒以及对 AI 实际应用缺乏根本理解。然而,正如 Legrand 所强调的,这些并非技术问题,而是人的问题。
个性化:新的竞争前沿
传统的广泛营销方法正在迅速过时。医疗服务提供者现在通过多个平台互动,不仅需要有针对性的互动,还需要深度相关的互动。AI 通过分析过去的行为、偏好和互动模式,制作看似个性化的沟通内容,使这一切成为可能。
"尤其是生成式 AI 在推动规模化个性化方面发挥了重要作用,能够在多个渠道进行扩展,"Legrand 解释道。
数据:战略金矿
AI 的力量在于其能从复杂的数据环境中提取可行的洞察。从识别处方模式到优化供应链,甚至发现现有药物的潜在新疗法,可能性是非凡的。然而,这种潜力取决于强大的数据治理。
超越技术:整体方法
根据 Sabata 的经验,他提供了一个基础性观点:"永远不要将问题外包给 AI"——这有力地提醒我们,技术是为人类战略服务的,而不是相反。AI 应该增强明确定义的流程,而不是成为万能解决方案。
前进之路:战略创新
对于那些对采用 AI 持犹豫态度的组织来说,专家组的信息很明确:不要让对不完美的恐惧阻碍你前进。从实际应用开始,拥抱持续学习,将 AI 视为实现业务愿景的战略合作伙伴。
正如 Legrand 所解释的:"AI 是实现你的业务愿景的手段,而不是其替代品。"最成功的组织将是那些以战略性思维和持续学习承诺来对待 AI 的组织。
好文章,需要你的鼓励
在CES 2025上,英伟达发布了Alpamayo开源AI模型家族,包含模拟工具和数据集,用于训练物理机器人和车辆。核心产品Alpamayo 1是一个100亿参数的视觉语言行动模型,能让自动驾驶汽车像人类一样思考,解决复杂边缘案例。该模型通过分解问题、推理各种可能性来选择最安全路径,并能解释其驾驶决策。英伟达还发布了包含1700小时驾驶数据的开放数据集和AlpaSim开源模拟框架。
SimWorld是由UCSD等多所顶尖院校联合开发的革命性AI仿真平台,基于虚幻引擎5构建了具备真实物理规律的虚拟城市环境。该平台支持无限扩展的程序化世界生成和自然语言交互,让AI智能体能够在复杂环境中学会生存、合作和竞争,为通用人工智能的发展提供了前所未有的训练平台。
HPE旗下Unix系统HP-UX 11i v3最终版本已于去年底结束支持,标志着这一始于1982年的操作系统产品线正式终结。该系统经历了从HP FOCUS处理器到摩托罗拉68000,再到PA-RISC架构的演进历程。最后几个版本仅支持英特尔安腾处理器,随着2021年安腾处理器停产,HP-UX失去硬件支撑而走向终结。
浙江大学联合华为提出C2DLM,这是一种因果概念引导的扩散语言模型,通过自动提取因果关系并融入注意力机制来增强AI推理能力。相比传统方法,C2DLM在推理任务上平均提升1.31%-12%,训练效率提高3.2倍,为解决语言模型推理能力不足开辟了新路径。