近年来,随着个性化服务规模化需求的快速增长,人工智能 (AI) 已成为制药公司的关键竞争优势。然而,尽管这些先进技术前景广阔,许多医疗机构在有效实施和扩展这些解决方案时仍面临挑战。
这一挑战正是近期由 Trueblue 赞助的 pharmaphorum 网络研讨会"AI 在制药商业战略中的影响:从数据到实时洞察与行动"的焦点。
研讨会邀请了多位行业领袖参与,包括 Trueblue 战略与合作伙伴副总裁 Charm Legrand、Trueblue 首席商务官 Sergio Romoli、Microsoft 医疗与生命科学行业顾问 (EMEA) Andrew Graley,以及勃林格殷格翰全球医疗事务部全球洞察分析解决方案与战略负责人 Enric Sabata。会议围绕 AI 在推进制药行业发展中的三个核心主题展开讨论:应对采用挑战、推动个性化发展和利用数据进行决策。
技术转型的人性化考量
AI 潜力的核心在于每个公司都必须回答的一个问题:"作为一个组织,我们需要什么?"据 Romoli 介绍,这个问题对成功整合至关重要。
"我们从不为技术而技术,只有在看到客户价值时才会使用技术,"他解释道。
与会专家一致认为,在这个快速发展的行业中,价值是关键。围绕 AI 的炒作和争议十分复杂,决策者往往会因为种种不确定性而犹豫不决——投资回报不明确、组织抗拒以及对 AI 实际应用缺乏根本理解。然而,正如 Legrand 所强调的,这些并非技术问题,而是人的问题。
个性化:新的竞争前沿
传统的广泛营销方法正在迅速过时。医疗服务提供者现在通过多个平台互动,不仅需要有针对性的互动,还需要深度相关的互动。AI 通过分析过去的行为、偏好和互动模式,制作看似个性化的沟通内容,使这一切成为可能。
"尤其是生成式 AI 在推动规模化个性化方面发挥了重要作用,能够在多个渠道进行扩展,"Legrand 解释道。
数据:战略金矿
AI 的力量在于其能从复杂的数据环境中提取可行的洞察。从识别处方模式到优化供应链,甚至发现现有药物的潜在新疗法,可能性是非凡的。然而,这种潜力取决于强大的数据治理。
超越技术:整体方法
根据 Sabata 的经验,他提供了一个基础性观点:"永远不要将问题外包给 AI"——这有力地提醒我们,技术是为人类战略服务的,而不是相反。AI 应该增强明确定义的流程,而不是成为万能解决方案。
前进之路:战略创新
对于那些对采用 AI 持犹豫态度的组织来说,专家组的信息很明确:不要让对不完美的恐惧阻碍你前进。从实际应用开始,拥抱持续学习,将 AI 视为实现业务愿景的战略合作伙伴。
正如 Legrand 所解释的:"AI 是实现你的业务愿景的手段,而不是其替代品。"最成功的组织将是那些以战略性思维和持续学习承诺来对待 AI 的组织。
好文章,需要你的鼓励
英国政府发布新的反勒索软件指导文件,旨在解决供应链安全薄弱环节。该指南与新加坡当局联合制定,帮助组织识别供应链问题并采取实际措施检查供应商安全性。英国国家网络安全中心过去一年处理了204起"国家重大"网络安全事件。指南强调选择安全可靠的供应商、加强合同网络安全条款、进行独立审计等措施,以提升供应链韧性和防范网络攻击。
上海AI实验室等机构联合提出FrameThinker框架,革命性地改变了AI处理长视频的方式。该系统采用"侦探式"多轮推理,先快速扫描全视频获得概览,再有针对性地深入分析关键片段。通过两阶段训练和认知一致性验证,FrameThinker在多个视频理解基准测试中准确率平均提升10.4%,计算效率提高20倍以上,为AI视频理解领域带来突破性进展。
OpenAI发布"企业知识"功能,为ChatGPT商业版、企业版和教育版用户提供连接组织数据的能力。该功能集成Slack、SharePoint、Google Drive、Teams和Outlook等应用,但不包含OneDrive。用户需单独验证每个连接器,数据经过加密且不用于训练。与微软365 Copilot的30美元月费相比,ChatGPT商业版仅需25美元,在品牌认知度和价格方面具有竞争优势。
复旦大学团队创建MedQ-Bench基准,首次系统评估AI模型医学影像质量评估能力。研究覆盖五大成像模式,设计感知-推理双层评估体系,意外发现医学专用AI表现不如通用AI。结果显示最佳AI模型准确率仅68.97%,远低于人类专家82.50%,揭示了AI在医学影像质控应用中的现实挑战和改进方向。