在快速发展的 AI 领域中,从传统的生成式 AI 模型向主动式 AI 系统的转变,标志着全球企业发展的关键时刻。
根据 theCUBE Research 最新分析,在"AI 的下一个前沿"播客中,SiliconANGLE 和 theCUBE 的 George Gilbert 与节目主持人 theCUBE Research 的 Scott Hebner 一起,为理解和引导向主动式 AI 发展的进程提供了重要见解。
"60年来,我们一直通过手动编写规则来构建软件应用程序," Gilbert 说。"主动式 AI 从根本上改变了这一范式,使软件能够自主学习业务流程规则。"
理解主动式 AI
据 Hebner 介绍,主动式 AI 代表着一次变革性的飞跃,超越了生成式 AI 模型的任务导向特性,朝着能够自主决策和推理的目标驱动系统迈进。与基于生成式 AI 的助手不同,主动式代理具有明确的目标,能够理解任务及其更广泛的背景、推理路径和行动后果。
"基于生成式 AI 的助手是任务导向的:给它们一个提示,它们就执行任务," Hebner 说。"但代理能够帮助用户理解并实现特定目标,模拟精确的事件链和结果。"
攀登阶梯:通往主动式 AI 系统的四个阶梯
1. 领域知识 这个旅程始于将 AI 系统植根于特定的领域知识。企业必须对大语言模型进行微调并整合结构化的领域特定数据,使 AI 能够理解金融、医疗或零售行业独特的语言和关系。
2. 决策智能和可解释性 第二阶梯将决策智能整合到 AI 模型中,增强其推理能力。思维链、语义推理和因果 AI 等技术使系统能够分析因果关系并透明地解释其推理过程。
3. 构建 AI 代理 建立领域知识和决策智能后,企业必须选择适当的平台或集成开发环境来构建或获取定制的 AI 代理。
4. 主动式 AI 系统和网络 最后一个阶梯是将各个代理连接成一个有凝聚力的、目标驱动的主动式网络。
持续学习循环 学习循环是将这些阶梯连接在一起的关键组件。这个循环通过利用多代理强化学习和反馈机制确保持续改进,不断完善代理及其底层模型。
战略性渐进之旅 采用主动式 AI 将是一个渐进的过程。企业无需一夜之间彻底改变现有基础设施,而是逐步整合主动式功能。
随着企业向主动式 AI 系统迈进,理解这个结构化的阶梯和它支持的持续学习循环至关重要。那些战略性地拥抱这种演变的企业将引领下一个 AI 驱动转型的时代。
好文章,需要你的鼓励
这项研究提出了R1-Searcher++框架,通过两阶段训练策略使大语言模型能像人类一样灵活利用内部知识和外部信息。该方法创新性地采用强化学习激励模型优先使用内部知识,并引入记忆机制将检索到的信息转化为内部知识,实现动态知识获取。实验表明,R1-Searcher++不仅在多步问答任务上表现优异,还大幅减少了检索次数,显著提高了推理效率。
这项研究提出了AutoRefine,一种革新性的强化学习框架,为大语言模型引入了"边思考边搜索和完善"的全新范式。与传统方法不同,AutoRefine在连续搜索调用之间添加知识完善步骤,让模型能够有效过滤和组织信息。通过结合答案正确性和检索质量双重奖励,该方法在七项问答基准测试中平均提升6.9%的准确率,特别在复杂多跳推理场景中表现突出,解决了现有检索增强推理的核心局限性。
这项研究揭示了一种新型网络安全威胁:利用普通网络广告攻击AI网页代理。中科院研究团队开发的AdInject攻击无需特殊权限,仅通过精心设计的广告内容就能误导AI代理点击恶意链接,成功率高达90%以上。研究使用严格的黑盒模型,更符合现实场景,暴露了当前AI代理面临的实际安全漏洞。实验还表明,即使添加专门的防御提示,这类攻击仍能成功率超过50%,凸显了设计更强大防御机制的紧迫性。
东北大学与快手科技联合研发的UNITE系统为多模态信息检索带来突破性进展。这项发表于2025年5月的研究首次系统分析了模态特定数据如何影响检索性能,并提出创新的模态感知掩码对比学习技术,有效解决不同模态间的竞争关系。UNITE能同时处理文本、图像、视频及其组合,在40多项测试中超越现有方法,即使与参数规模更大的模型相比也表现出色。研究发现视频-文本对在通用检索中表现优异,而文本-文本和文本-图像对对指令遵循任务至关重要,为未来多模态系统研究提供了宝贵指南。