3月17日,傅利叶正式开源全尺寸人形机器人数据集Fourier ActionNet,并发布全球首个全流程工具链。首批上线超3万条高质量真机训练数据,包含多种自由度灵巧手的训练数据及专门针对手部任务的模仿学习数据,面向全球开发者及科研机构开源共享,提供从数据采集、训练、部署的一站式解决方案。

数据高质量,提升训练有效性
高质量机器人动作数据是具身智能发展的核心驱动力。然而真实场景下的机器人动作数据长期面临采集成本高、标注精度不足等问题,制约着行业进步。Fourier ActionNet数据集囊括傅利叶GRx系列所有机型的各类任务训练,完整记录机器人在真实环境中的任务执行数据,涵盖了对常用工具、家居用品、食物等多种物体的精确取放、倾倒等操作,以及在不同环境条件下实现泛化执行。

全球首个全流程工具链,降低研发门槛
除了数据集的开源以外,傅利叶同步开放了全球首个包含采集算法、训练算法以及数据部署算法的全流程工具链,最大程度上与全球开发者共享研究成果。开源的训练框架(如DP、ACT、iDP3)和部署工具,进一步降低了人形机器人技术研发门槛。

共建开源生态,推动技术共享
目前,傅利叶已与国内外20多家顶尖科研院校及行业领军企业开展合作,基于GRx人形机器人平台在强化学习、模仿学习、VLM大模型、感知系统等研究领域产出多项突破性成果。此次数据集开源标志着傅利叶从技术攻坚向生态共建的战略升级,未来还将持续开放更多覆盖全身运控、多任务协同的进阶数据模块。

傅利叶始终致力于推动人形机器人开源生态建设,助力全球机器人技术共享与创新。我们诚邀所有对人形机器人研究感兴趣的开发者和科研伙伴加入这一开源浪潮,共同参与数据贡献与算法优化,迎接机器人技术赋能未来的无限可能。
好文章,需要你的鼓励
2025年,企业技术高管面临巨大压力,需要帮助企业从持续的AI投入中获得回报。大多数高管取得了进展,完善了项目优先级排序方法。然而,CIO仍面临AI相关问题。支离破裂的AI监管环境和宏观经济阻力将继续推动技术高管保持谨慎态度。随着AI采用增长的影响不断显现,一些CIO预期明年将带来劳动力策略变化。
这篇论文提出了CJE(因果法官评估)框架,解决了当前LLM评估中的三大致命问题:AI法官偏好倒置、置信区间失效和离线策略评估失败。通过AutoCal-R校准、SIMCal-W权重稳定和OUA不确定性推理,CJE仅用5%的专家标签就达到了99%的排名准确率,成本降低14倍,为AI评估提供了科学可靠的解决方案。
FinOps基金会周四更新了其FinOps开放成本和使用规范云成本管理工具,新版本1.3更好地支持多供应商工作流。该版本新增了合同承诺和协商协议数据集,增加了跨工作负载成本分摊跟踪列,以及云支出和使用报告时效性和完整性的元数据可见性。随着云和AI采用推动企业IT预算增长,技术供应商正在关注将成本与价值联系起来的努力。大型企业通常使用三到四家云供应商,小企业可能使用两家,同时还有数据中心、SaaS和许可等服务。
NVIDIA团队开发出Fast-FoundationStereo系统,成功解决了立体视觉AI在速度与精度之间的两难选择。通过分而治之的策略,该系统实现了超过10倍的速度提升同时保持高精度,包括知识蒸馏压缩特征提取、神经架构搜索优化成本过滤,以及结构化剪枝精简视差细化。此外,研究团队还构建了包含140万对真实图像的自动伪标注数据集,为立体视觉的实时应用开辟了新道路。