Nvidia 于周四宣布与电力行业研发机构 EPRI 合作,利用 AI 解决电网面临的问题。颇具讽刺意味的是,这些问题很大程度上是由 AI 本身带来的用电需求增长所导致的。
开放电力 AI 联盟 (Open Power AI Consortium) 包含多家电力公司和科技企业,该联盟表示将使用领域特定的 AI 模型来设计新的解决方案,以应对电力行业在未来几年预计将面临的问题。这些模型将开源并向学术界和产业界的研究人员开放。
随着 AI 增加了对计算能力的需求,美国及其他地区的数据中心面临着电力需求激增的问题。根据国际能源署的数据,未来几年电力需求预计每年增长 4%,几乎是 2023 年数据的两倍。
除了 Nvidia 和 EPRI 外,该联盟还包括 PG&E、Con Edison、Constellation Energy、Duke Energy、田纳西河谷管理局以及 NEOM 的能源和水务公司 ENOWA。在科技领域,Microsoft 和 Oracle 也都是成员。
为了在这一趋势中保持领先,科技公司们一直在竞相确保发电容量,因为电力已经从简单的成本项目转变为竞争优势。
在过去一年左右的时间里,科技公司持续签订新合同。这些合同主要集中在可再生能源项目上,主要是由于太阳能的低成本、模块化特性以及快速部署能力。
例如,Microsoft 最近在其可观的可再生能源组合中新增了 475 兆瓦的太阳能发电量。去年,它成为 Acadia 运营的一个 90 亿美元可再生能源开发项目的主要投资者,而在此之前,它表示正与 Brookfield 资产管理公司合作,计划在美国和欧洲部署 10.5 吉瓦的可再生能源,这些项目预计将在 2030 年前投入使用。
虽然新的电力来源可能是解决电力短缺最明显的答案,但这并不是唯一的解决方案。
最近的一项研究发现,通过在电网用电高峰期间削减用电量,包括将非时间敏感的任务转移到低需求期间,美国可以释放额外 76 吉瓦的容量。这个数字并不小,约占美国峰值需求的 10%。
这类解决方案很可能是这个新联盟将要探索的方向之一。
好文章,需要你的鼓励
麻省理工学院研究团队发现大语言模型"幻觉"现象的新根源:注意力机制存在固有缺陷。研究通过理论分析和实验证明,即使在理想条件下,注意力机制在处理多步推理任务时也会出现系统性错误。这一发现挑战了仅通过扩大模型规模就能解决所有问题的观点,为未来AI架构发展指明新方向,提醒用户在复杂推理任务中谨慎使用AI工具。
继苹果和其他厂商之后,Google正在加大力度推广其在智能手机上的人工智能功能。该公司试图通过展示AI在移动设备上的实用性和创新性来吸引消费者关注,希望说服用户相信手机AI功能的价值。Google面临的挑战是如何让消费者真正体验到AI带来的便利,并将这些技术优势转化为市场竞争力。
中科院自动化所等机构联合发布MM-RLHF研究,构建了史上最大的多模态AI对齐数据集,包含12万个精细人工标注样本。研究提出批评式奖励模型和动态奖励缩放算法,显著提升多模态AI的安全性和对话能力,为构建真正符合人类价值观的AI系统提供了突破性解决方案。