Acceldata Inc.(Acceldata 公司)今日宣布在其 xLake Reasoning Engine(xLake 推理引擎)中引入 Adaptive AI Anomaly Detection(自适应 AI 异常检测)功能,该功能可在业务运营受到影响之前自动识别隐藏的、多维度的数据异常。
今年二月推出的 xLake 推理引擎是该公司 Agentic Data Management(代理数据管理)平台的核心组件。它可在超大规模云、数据云和本地系统等多种环境中运行,作为一款具备人工智能感知能力的数据处理引擎,并集成了治理和安全功能。
公司表示,传统的异常检测工具只能识别如销售数据中数字“0”错误放置这样的一维错误。而自适应异常检测则能够发现跨多个数据维度中隐藏的异常,例如一张信用卡账户同时在相隔数百英里的不同地点显示交易记录。
首席执行官 Rohit Choudhary ( pictured ) 表示,随着大语言模型越来越多地采用结构化数据进行训练以确保准确性和验证,这项功能显得尤为重要。
他说:“这意味着回滚非常困难,一旦数据输入后,改变推理方式就变得异常艰难。”
缩小问题范围
他说,由于数据量增长过快,传统的数据质量和验证检查已经无力跟上。“这就要求我们必须将监测重点缩小到能够表明异常的问题上,”他解释道。“存在太多影响行为的相关因素。你不能等到事后才得知问题所在,因此运营效能取决于对热点区域的及时发现。”
Acceldata 表示,XLake 能够同时评估销售、产品 ID、区域和时间等多个属性维度上的异常,并支持客户优先处理高风险数据片段以获得更好的性能。该引擎能够检测出静态规则体系无法捕捉的独特模式,并可在无需人工调优的情况下不断自我适应。
Choudhary 表示:“我们可以自动识别高风险数据片段,并能在您提供的敏感状态或网站中发现异常。”
在诸如欺诈检测等领域,“系统将变得极为先进,因为每一条信息都有其上下文,”Choudhary 说。“你能追踪到的交互越多,就能越快发现问题,从而更迅速地采取行动。”
Acceldata 会收集来自数据、数据管道、基础设施、用户和成本等方面的元数据及监控信号。公司指出,多变量异常检测能够揭示传统工具常常忽略的相互依赖关系。可以配置代理程序以采取诸如预测业务影响、发出合规警告等动作,并可选择自动修复。
根因关联功能将基础设施故障、数据管道中断和数据峰值联系起来,从而锁定根本原因。系统还可以将预算超支与特定工作负载、用户、查询或流程相关联;通过关联用户身份、位置和数据敏感度来检测异常访问模式;将上游数据问题与下游分析关联;以及通过关联处理时间、数据量和资源限制来识别延迟的早期信号。
修复功能的设计充分考虑了人机协作的需求。“我们确保从配置到结果管理全过程中都有人工参与,”Choudhary 说。“代理程序开箱即带一组功能和提示,但我们也赋予您移除或修改这些功能的权利。”
代理数据管理平台将于下月发布。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。