Anthropic 正在启动一项 AI for Science 计划,以支持那些从事“高影响力”科学项目的研究人员,重点关注生物学和生命科学应用。
该计划于周一宣布,将在六个月内为“合格”的研究人员提供最多 20,000 美元的 Anthropic API 信用额度,研究人员的选拔依据是他们对科学的贡献、所提研究的潜在影响以及 AI 在有意义地加速其工作方面的能力。入选者将获得 Anthropic 标准 AI 模型套件的使用权限,其中包括公司所有公开的 Claude 系列模型。
Anthropic 在博客文章中写道:“先进的 AI 推理和语言能力可以帮助研究人员分析复杂的科学数据、生成假设、设计实验并更有效地传达研究成果。我们尤其关注利用 AI 加速诸如理解复杂生物系统、分析基因数据、加速药物研发(特别是针对一些全球最大疾病负担)、提高农业生产力等过程的应用。”
Anthropic 是众多看好 AI 在科学领域应用的科技公司之一。今年早些时候,Google 推出了“AI co-scientist”,该科技巨头表示该工具能够帮助科学家制定假设和研究计划。Anthropic 与其主要竞争对手 OpenAI 以及 FutureHouse 和 Lilia Sciences 等公司均声称,AI 工具可以大幅加速科学发现,尤其在医学领域。
然而,许多研究人员认为,目前的 AI 在指导科学研究过程中并非特别有用,这主要归因于其不可靠性。
开发“AI scientist”面临的部分挑战在于需要预见大量难以预料的干扰因素。AI 或许能在需要广泛探索的领域发挥作用,例如从海量可能性中筛选出候选项,但目前尚不清楚它是否能够进行那种跳出常规的解决问题方式,从而带来真正的突破。迄今为止,为科学设计的 AI 系统的成果大多未达到预期。2023 年,Google 表示在其一款名为 GNoME 的 AI 帮助下,大约合成了 40 种新材料,但外部分析发现,这些材料中实际上没有一种是真正意义上的全新成果。
Anthropic 无疑希望其此次努力能够优于以往的尝试。
该公司表示,其 AI for Science 计划的入选者将于每个月的第一个星期一依据科学价值、潜在影响、技术可行性以及生物安全审查标准 ( i.e. 确保所提研究不会被用于有害应用 ) 进行遴选。研究人员可通过公司网站上的表格进行申请,所有申请材料将由 Anthropic 进行审核,审核团队中包括相关领域的主题专家。
好文章,需要你的鼓励
初创公司Positron获得5160万美元A轮融资,推出专门针对AI推理的Atlas芯片。该公司声称其芯片在性能功耗比和成本效益方面比英伟达H100高出2-5倍,并已获得Cloudflare等企业客户采用。Positron专注于内存优化设计,无需液体冷却,可直接部署在现有数据中心。公司计划2026年推出支持16万亿参数模型的下一代Titan平台。
这项由Midjourney团队主导的研究解决了AI创意写作中的关键问题:如何让AI既能写出高质量内容,又能保持创作的多样性和趣味性。通过引入"偏差度"概念和开发DDPO、DORPO两种新训练方法,他们成功让AI学会从那些被传统方法忽视的优秀独特样本中汲取创意灵感,最终训练出的模型在保持顶级质量的同时,创作多样性接近人类水平,为AI创意写作开辟了新方向。
忽视智能体AI的潜力,特别是其对现代化数据基础设施的需求,面临着与忽视互联网的零售商相同的生存风险。关键不在于是否投资,而在于如何确保投资转化为可衡量的现实收益。企业需要超越AI试验阶段,明确业务目标,从治理开始构建ROI模型。成功的组织在整个技术栈中嵌入智能体,从面向客户的应用到内部治理系统。通过强化数据治理、减少重复工具和统一平台,AI的ROI将从理论变为现实。
上海AI实验室联合多所高校开发出VisualPRM系统,这是首个专门用于多模态推理的过程奖励模型。该系统能像老师批改作业一样逐步检查AI的推理过程,显著提升了AI在视觉推理任务上的表现。研究团队构建了包含40万样本的训练数据集和专门的评估基准,实现了在七个推理基准上的全面性能提升,即使是最先进的大型模型也获得了5.9个百分点的改进。