Anthropic 正在启动一项 AI for Science 计划,以支持那些从事“高影响力”科学项目的研究人员,重点关注生物学和生命科学应用。
该计划于周一宣布,将在六个月内为“合格”的研究人员提供最多 20,000 美元的 Anthropic API 信用额度,研究人员的选拔依据是他们对科学的贡献、所提研究的潜在影响以及 AI 在有意义地加速其工作方面的能力。入选者将获得 Anthropic 标准 AI 模型套件的使用权限,其中包括公司所有公开的 Claude 系列模型。
Anthropic 在博客文章中写道:“先进的 AI 推理和语言能力可以帮助研究人员分析复杂的科学数据、生成假设、设计实验并更有效地传达研究成果。我们尤其关注利用 AI 加速诸如理解复杂生物系统、分析基因数据、加速药物研发(特别是针对一些全球最大疾病负担)、提高农业生产力等过程的应用。”
Anthropic 是众多看好 AI 在科学领域应用的科技公司之一。今年早些时候,Google 推出了“AI co-scientist”,该科技巨头表示该工具能够帮助科学家制定假设和研究计划。Anthropic 与其主要竞争对手 OpenAI 以及 FutureHouse 和 Lilia Sciences 等公司均声称,AI 工具可以大幅加速科学发现,尤其在医学领域。
然而,许多研究人员认为,目前的 AI 在指导科学研究过程中并非特别有用,这主要归因于其不可靠性。
开发“AI scientist”面临的部分挑战在于需要预见大量难以预料的干扰因素。AI 或许能在需要广泛探索的领域发挥作用,例如从海量可能性中筛选出候选项,但目前尚不清楚它是否能够进行那种跳出常规的解决问题方式,从而带来真正的突破。迄今为止,为科学设计的 AI 系统的成果大多未达到预期。2023 年,Google 表示在其一款名为 GNoME 的 AI 帮助下,大约合成了 40 种新材料,但外部分析发现,这些材料中实际上没有一种是真正意义上的全新成果。
Anthropic 无疑希望其此次努力能够优于以往的尝试。
该公司表示,其 AI for Science 计划的入选者将于每个月的第一个星期一依据科学价值、潜在影响、技术可行性以及生物安全审查标准 ( i.e. 确保所提研究不会被用于有害应用 ) 进行遴选。研究人员可通过公司网站上的表格进行申请,所有申请材料将由 Anthropic 进行审核,审核团队中包括相关领域的主题专家。
好文章,需要你的鼓励
是德科技高级副总裁兼通信解决方案事业部总裁Kailash Narayanan现场指出,算力固然重要,但如果能耗过高,技术的实用性将大打折扣,因此,所有的高速、高性能计算,都必须在极低的功耗下实现,这是AI等技术能否大规模落地的核心前提。
DeepSeek-AI团队通过创新的软硬件协同设计,仅用2048张GPU训练出性能卓越的DeepSeek-V3大语言模型,挑战了AI训练需要海量资源的传统观念。该研究采用多头潜在注意力、专家混合架构、FP8低精度训练等技术,大幅提升内存效率和计算性能,为AI技术的民主化和可持续发展提供了新思路。
来自上海交通大学和浙江大学等机构的研究团队开发出首个AI"记忆操作系统"MemOS,解决了AI系统无法实现人类般持久记忆和学习的根本限制。该系统将记忆视为核心计算资源进行调度、共享和演化,在时间推理任务中相比OpenAI记忆系统性能提升159%。MemOS采用三层架构设计,通过标准化记忆单元实现跨平台记忆迁移,有望改变企业AI部署模式。
加拿大女王大学研究团队首次系统评估了大型视频语言模型的因果推理能力,发现即使最先进的AI在理解视频中事件因果关系方面表现极差,大多数模型准确率甚至低于随机猜测。研究创建了全球首个视频因果推理基准VCRBench,并提出了识别-推理分解法(RRD),通过任务分解显著提升了AI性能,最高改善幅度达25.2%。