数据中心运营商一直面临的关于 AI 硬件的全方位难题主要是电力和散热供应不足。但现在另一个问题正在悄然逼近,这就是设备的重量。
AI 服务器机架的密集度远高于标准计算机架。这不仅需要更多的电力,同时也意味着在一个空间内挤满了更多的金属和塑料。结果是设备重量增加,从而影响了数据中心的设计和建设。
根据 Uptime Institute 的统计,平均一台 42U 服务器机架(标准配置了计算、网络和存储设备)的重量在 1500 至 2500 磅之间。但是 AI 设备,包括多块 GPU、智能网卡和液冷设备等,其重量轻易超过 4000 磅。
如果将这个数字乘以构成超大规模数据中心数十甚至数百个满载 AI 设备的机架,你就能看出这对地板设计会产生怎样的影响。
坚实的基础
Dell’Oro Group 数据中心物理基础设施及液冷领域的研究总监 Alex Cordovil 表示,他观察到的第一个问题是数据中心机房中提升地板变得越来越少。
Cordovil 在接受 Data Center Knowledge 采访时表示:“加强提升地板的承重能力成本相当高,因此已不太合理。所以,我们看到越来越多的数据中心选择直接在混凝土板上建造。”
他补充道:“我曾与一家工程公司交流,他们反映某个多层数据中心在结构上并非为容纳 3000 或 4000 磅重的机架而设计,那些结构原本是为了其他用途建造的。现在根本无法再放置这种【超密集设备】。”
数据中心建设专家 JLL 的技术服务董事总经理 Peter Skae 表示,提升地板并未完全被淘汰,只是其使用方式发生了变化。“还有一些地方仍在采用【提升地板】,因为现在大部分机柜都直接连接有冷却水管,而大家又不希望将冷却水置于顶部,”他说。
根据 Skae 的说法,数据中心运营商需要提升地板用于布置水管和线缆,但提升高度可能仅为 1 英尺,而不是传统设计所要求的 2 英尺。
重达 4000 磅的 AI 服务器机架正迫使数据中心设计师重新考虑传统的多层建筑设计。(图片来源:CyrusOne)
单层建筑的优势
AI 数据中心不仅在降低地板承重要求,同时在建筑高度上也做出了调整。Skae 表示,越来越多的数据中心放弃多层设计,转而选择单层建筑。
他说:“我认为大多数人考虑的是单层建筑,主要原因在于多层设计的复杂性。”
选择单层数据中心的原因在于,多层设施建设成本大幅上涨,因为需要投入更多资金以提高地板的承重能力。
Skae 说:“我们每天都会为客户讨论这些选项,比如是否可以建设两层。而大多数情况下,我们认为不会采用多层设计,因为建造第二层的成本将会非常高。”
为下一代容量改造数据中心
高密度 AI 数据中心设备的影响不仅作用于新建数据中心,也波及到现有空间的改造。建筑公司必须进行更多结构分析,以确保现有建筑的地板承重能力能够满足设备重量的要求。
Skae 表示:“问题不仅仅在于重量,还涉及到高度以及其他一些因素,使得许多想要改造为数据中心的建筑实际上并不可行。”
Cordovil 指出,结果就是对棕地场址的重新兴趣。所谓绿地通常指未开发的土地,而棕地则是指曾被开发但现已废弃的场所,比如工厂、医院或购物中心。
改造旧工业场所的一个优势是,这些地方通常配备了变电站,电力供应已到位。如果是工厂,建筑时通常会有坚固而沉重的地板。
Cordovil 说:“从发电机传输电力,并且能直接连接变电站,对大多数市场来说是一个巨大的优势。”
“一切都在重新评估”
Skae 表示,虽然 AI 数据中心可能需要更强的地板加固,但这不会影响开发进度。
他说:“使用不同强度的混凝土、不同规格的钢材,不过这些变化并不会实质上影响施工进度。”他还补充道,他从未遇到客户因建造场地的材料成本而拒绝报价的情况。
Cordovil 认为,AI 硬件对数据中心设计的影响依然显著。考虑到数据中心通常设计使用寿命为 10 至 20 年,建筑商也深知他们的设施不可能在两年内就变得过时。
这位分析师表示:“无疑正在经历一次重大转变或重新评估。没有人停止建设,但他们确实在重新审视如何建设,以确保他们的场地符合未来的需求。”
他补充道:“这真的改变了很多先入为主的观念。一切都在重新衡量,一切都在重新评估。”
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。