Meta 正在向数据标注公司 Scale AI 投资近 150 亿美元,并获得这家初创公司 49% 的股份,同时还将聘请 CEO Alexandr Wang 来帮助领导公司内部新成立的"超级智能"实验室。
这笔交易让人想起 Meta 此前进行的大规模高风险投资,比如以 190 亿美元收购 WhatsApp 以及以 10 亿美元收购 Instagram。当这些并购完成时,许多人都认为 Meta 为这些平台支付了过高的价格——而今天的讨论也没有什么不同。这个周末,不少投资者和创始人对 Meta 的最新合作感到困惑不解。
最终,WhatsApp 和 Instagram 成为了 CEO Mark Zuckerberg 帝国的重要组成部分。问题是 Scale AI 这笔交易是否同样对 Meta 有利,再次证明 Zuckerberg 的前瞻性战略,还是说公司在错误引导的努力中正试图追赶 OpenAI、Google 和 Anthropic 等竞争对手时抓错了重点。
在这种情况下,Meta 并非押注于一个新兴的社交媒体应用,而是押注于用来训练顶级 AI 模型的数据。在过去几年中,OpenAI 等领先的 AI 实验室一直依赖 Scale AI 来生成和标注用于训练模型的数据。最近几个月,Scale AI 及其数据标注竞争对手开始雇佣高技能人才,如博士科学家和高级软件工程师,为前沿 AI 实验室生成高质量数据。
与 Scale 这样的数据提供商建立密切关系可能会让 Meta 受益。据一位知情人士透露,Meta 的领导层一直抱怨公司领先 AI 团队在数据方面缺乏创新。
今年早些时候,Meta 的生成式 AI 部门推出了 Llama 4,这是一系列 AI 模型,但未能匹敌中国 AI 实验室 DeepSeek 模型的能力,被普遍视为令人失望。雪上加霜的是,Meta 正试图解决人才流失问题。根据 SignalFire 编制的数据,Meta 在 2024 年向 AI 实验室流失了 4.3% 的顶尖人才。
Meta 并不仅仅押注 Scale AI 来重新点燃其 AI 努力,还押注 Wang 来领导上述新的超级智能团队。这位 28 岁的 CEO 已经证明自己是一个强有力的初创公司创始人——他在硅谷以雄心勃勃、善于销售和人脉广泛而闻名。在过去几个月中,Wang 一直在与世界各国领导人会面,讨论 AI 对社会的影响。
然而,Wang 此前从未领导过这种类型的 AI 实验室,他也没有像其他许多 AI 实验室领导者那样的 AI 研究背景,比如 Safe Superintelligence 的 Ilya Sutskever 或 Mistral 的 Arthur Mensch。这也许就是为什么据说 Meta 还在招募像 DeepMind 的 Jack Rae 这样的知名人才来充实其新的 AI 研究团队。
收购后 Scale AI 公司的命运有些不明朗。现实世界数据在 AI 模型训练中的作用正在发生变化——一些 AI 实验室已经将数据收集工作内部化,而其他实验室则增加了对合成 (即 AI 生成) 数据的依赖。今年 4 月,The Information 报道称 Scale AI 未能实现一些收入目标。
据 Anyscale 联合创始人 Robert Nishihara 称,几个前沿 AI 实验室正在探索利用和优化数据的新方法,其中许多方法都需要大量计算资源。
"数据是一个移动目标,"Nishihara 在接受 TechCrunch 采访时表示。"这不仅仅是追赶的有限努力——你必须创新。"
Meta 和 Wang 的关系可能会吓跑传统上与 Scale AI 合作的其他 AI 实验室。如果是这样,这笔交易可能会对 Scale AI 的竞争对手有利,比如 Turing、Surge AI,甚至是像最近推出的 LM Arena 这样的非传统数据提供商。
Turing CEO Jonathan Siddharth 通过电子邮件告诉 TechCrunch,鉴于围绕 Meta 与 Scale AI 交易的传言,他收到了客户更多的关注。
"我认为会有一些客户更愿意与更中立的合作伙伴合作,"他说。
只有时间才能证明 Meta 的投资将如何影响其 AI 努力,但该公司需要追赶的差距很大。与此同时,竞争并没有放缓。OpenAI 正在为其下一个旗舰模型 GPT-5 的发布做准备,以及多年来首个公开可用的模型——该模型将与 Meta 当前和未来的 Llama 版本竞争。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。