Meta本周发布的一款新生成式AI模型可能会改变机器理解物理世界的方式,为更智能的机器人等应用创造机会。
这款名为"视频联合嵌入预测架构2"(V-JEPA 2)的开源模型,旨在帮助人工智能理解重力和物体永恒性等物理概念。
Meta在博客文章中表示:"通过分享这项工作,我们希望为研究人员和开发者提供最佳模型和基准,以帮助加速研究和进展,最终打造更好、更强大的AI系统来改善人们的生活。"
目前允许AI与物理世界交互的模型依赖于标记数据或视频来模拟现实,但这种新方法强调物理世界的逻辑,包括物体如何移动和相互作用。该模型能让AI理解诸如球从桌子上滚落会掉下来这样的概念。
Meta表示,该模型对自动驾驶车辆和机器人等设备很有用,因为它们无需针对每种可能情况进行训练。公司称这是向类人适应能力AI迈出的一步。
物理AI领域的一大挑战是需要大量训练数据,这需要时间、资金和资源。今年早些时候在SXSW大会上,专家表示合成数据——由AI创建的训练数据——可以帮助传统学习模型应对意外情况。
Meta表示,其新模型简化了这一过程,使实际应用更加高效,因为它不依赖于所有这些训练数据。
世界模型的下一步包括训练能够在不同时空尺度上学习、推理和规划的模型,使它们更好地分解复杂任务。除了视觉之外还能使用音频和触觉等其他感官的多模态模型,也将帮助未来的AI模型更好地理解现实世界。
好文章,需要你的鼓励
很多人担心被AI取代,陷入无意义感。按照杨元庆的思路,其实无论是模型的打造者,还是模型的使用者,都不该把AI放在人的对立面。
MIT研究团队提出递归语言模型(RLM),通过将长文本存储在外部编程环境中,让AI能够编写代码来探索和分解文本,并递归调用自身处理子任务。该方法成功处理了比传统模型大两个数量级的文本长度,在多项长文本任务上显著优于现有方法,同时保持了相当的成本效率,为AI处理超长文本提供了全新解决方案。
谷歌宣布对Gmail进行重大升级,全面集成Gemini AI功能,将其转变为"个人主动式收件箱助手"。新功能包括AI收件箱视图,可按优先级自动分组邮件;"帮我快速了解"功能提供邮件活动摘要;扩展"帮我写邮件"工具至所有用户;支持复杂问题查询如"我的航班何时降落"。部分功能免费提供,高级功能需付费订阅。谷歌强调用户数据安全,邮件内容不会用于训练公共AI模型。
华为研究团队推出SWE-Lego框架,通过混合数据集、改进监督学习和测试时扩展三大创新,让8B参数AI模型在代码自动修复任务上击败32B对手。该系统在SWE-bench Verified测试中达到42.2%成功率,加上扩展技术后提升至49.6%,证明了精巧方法设计胜过简单规模扩展的技术理念。