总部位于上海的人工智能公司MiniMax发布了一款开源推理模型,在性能和成本方面对中国竞争对手DeepSeek以及美国的Anthropic、OpenAI和Google发起挑战。
MiniMax-M1于周一基于Apache软件许可证发布,因此是真正的开源模型,这与Meta的Llama系列(采用非开源的社区许可证)和DeepSeek(仅部分采用开源许可证)形成鲜明对比。
MiniMax在博客文章中自豪地表示:"在复杂的生产力导向场景中,M1的能力在开源模型中名列前茅,超越了国内闭源模型,接近领先的海外模型,同时提供业界最佳的成本效益。"
根据博客文章,M1在多个基准测试(AIME 2024、LiveCodeBench、SWE-bench Verified、Tau-bench和MRCR)上与OpenAI o3、Gemini 2.5 Pro、Claude 4 Opus、DeepSeek R1、DeepSeek R1-0528和Qwen3-235B展开竞争,在不同程度上领先或落后于其他模型。虽然供应商提供的基准测试结果需要谨慎对待,但源代码已在GitHub上公开,用户可以独立验证其性能。
MiniMax明确表示要取代DeepSeek成为行业颠覆者,特别强调其上下文窗口(能够处理的输入量)达到100万个token,与Google Gemini 2.5 Pro相当,是DeepSeek R1容量的八倍。
在输出方面,该模型可以处理8万个token,优于DeepSeek的6.4万token容量,但略逊于OpenAI o3的10万token输出能力。
得到阿里巴巴集团、腾讯和IDG资本支持的MiniMax声称,其Lightning Attention机制通过改善注意力矩阵计算方式,提高了训练和推理效率,使M1模型在处理长上下文输入和推理时具有优势。
该公司声称:"例如,在执行8万token的深度推理时,它只需要DeepSeek R1约30%的计算能力。这一特性使我们在训练和推理方面都具有显著的计算效率优势。"
这种更高效的计算方法,结合名为CISPO的改进强化学习算法(详见M1技术报告),转化为更低的计算成本。
MiniMax声称:"整个强化学习阶段仅使用512块英伟达H800芯片运行三周,租赁成本仅为53.74万美元。这比最初预期少了一个数量级。"
好文章,需要你的鼓励
TechCrunch Disrupt 2025 AI舞台将汇聚塑造科技未来的领军人物,顶尖风投将揭示在快速变化的AI领域获得融资的关键。来自Apptronik、ElevenLabs、Hugging Face、Runway等创新企业的领导者将分享前沿洞见,探讨AI如何重塑创意过程、改变物理世界、变革国防安全和重新定义人际关系。10月27-29日,五大主题舞台将在旧金山呈现科技创新的未来图景。
西班牙研究团队提出了一种创新的AI自我纠错方法SSC,让人工智能学会识别和修正规则中的漏洞。当AI发现自己在钻空子获得高分时,它会反思规则的合理性并主动改进。实验显示这种方法将AI的"钻空子"行为从50-70%降低到3%以下,同时提升了回答质量。这项技术有望让AI从被动执行指令转变为能够质疑和改进指令的智能协作伙伴。
英超联赛与微软达成五年战略合作伙伴关系,推出AI驱动的Premier League Companion服务,为全球球迷提供个性化体验。该服务利用Azure OpenAI技术,整合30多个赛季的统计数据、30万篇文章和9000个视频,帮助球迷发现和了解更多内容。未来还将为Fantasy Premier League引入个人助理经理功能,并通过Azure AI优化比赛直播体验和赛后分析。
这篇文章详细解析了Long、Shelhamer和Darrell在2015年CVPR会议上发表的开创性研究"全卷积网络用于语义分割"。文章以通俗易懂的方式,将这项复杂的技术比作艺术家的绘画过程,解释了如何让计算机不仅识别图像中有什么物体,还能精确标出每个物体的位置和边界。研究团队通过将传统分类网络改造为全卷积形式,并巧妙运用上采样和跳跃连接技术,实现了高效准确的像素级图像理解。这一突破为自动驾驶、医学影像和增强现实等领域带来了革命性变化,奠定了现代计算机视觉的重要基础。