MiniMax M1模型挑战中国大语言模型霸主地位

上海AI公司MiniMax发布开源推理模型M1,在性能和成本方面挑战DeepSeek、OpenAI等竞争对手。该模型采用Apache许可证真正开源,支持100万token输入和8万token输出,上下文窗口是DeepSeek R1的8倍。MiniMax声称其Lightning Attention机制使M1在处理长上下文推理时仅需DeepSeek R1约30%的算力,大幅降低计算成本。

总部位于上海的人工智能公司MiniMax发布了一款开源推理模型,在性能和成本方面对中国竞争对手DeepSeek以及美国的Anthropic、OpenAI和Google发起挑战。

MiniMax-M1于周一基于Apache软件许可证发布,因此是真正的开源模型,这与Meta的Llama系列(采用非开源的社区许可证)和DeepSeek(仅部分采用开源许可证)形成鲜明对比。

MiniMax在博客文章中自豪地表示:"在复杂的生产力导向场景中,M1的能力在开源模型中名列前茅,超越了国内闭源模型,接近领先的海外模型,同时提供业界最佳的成本效益。"

根据博客文章,M1在多个基准测试(AIME 2024、LiveCodeBench、SWE-bench Verified、Tau-bench和MRCR)上与OpenAI o3、Gemini 2.5 Pro、Claude 4 Opus、DeepSeek R1、DeepSeek R1-0528和Qwen3-235B展开竞争,在不同程度上领先或落后于其他模型。虽然供应商提供的基准测试结果需要谨慎对待,但源代码已在GitHub上公开,用户可以独立验证其性能。

MiniMax明确表示要取代DeepSeek成为行业颠覆者,特别强调其上下文窗口(能够处理的输入量)达到100万个token,与Google Gemini 2.5 Pro相当,是DeepSeek R1容量的八倍。

在输出方面,该模型可以处理8万个token,优于DeepSeek的6.4万token容量,但略逊于OpenAI o3的10万token输出能力。

得到阿里巴巴集团、腾讯和IDG资本支持的MiniMax声称,其Lightning Attention机制通过改善注意力矩阵计算方式,提高了训练和推理效率,使M1模型在处理长上下文输入和推理时具有优势。

该公司声称:"例如,在执行8万token的深度推理时,它只需要DeepSeek R1约30%的计算能力。这一特性使我们在训练和推理方面都具有显著的计算效率优势。"

这种更高效的计算方法,结合名为CISPO的改进强化学习算法(详见M1技术报告),转化为更低的计算成本。

MiniMax声称:"整个强化学习阶段仅使用512块英伟达H800芯片运行三周,租赁成本仅为53.74万美元。这比最初预期少了一个数量级。"

来源:The Register

0赞

好文章,需要你的鼓励

2025

06/18

11:39

分享

点赞

邮件订阅