总部位于上海的人工智能公司MiniMax发布了一款开源推理模型,在性能和成本方面对中国竞争对手DeepSeek以及美国的Anthropic、OpenAI和Google发起挑战。
MiniMax-M1于周一基于Apache软件许可证发布,因此是真正的开源模型,这与Meta的Llama系列(采用非开源的社区许可证)和DeepSeek(仅部分采用开源许可证)形成鲜明对比。
MiniMax在博客文章中自豪地表示:"在复杂的生产力导向场景中,M1的能力在开源模型中名列前茅,超越了国内闭源模型,接近领先的海外模型,同时提供业界最佳的成本效益。"
根据博客文章,M1在多个基准测试(AIME 2024、LiveCodeBench、SWE-bench Verified、Tau-bench和MRCR)上与OpenAI o3、Gemini 2.5 Pro、Claude 4 Opus、DeepSeek R1、DeepSeek R1-0528和Qwen3-235B展开竞争,在不同程度上领先或落后于其他模型。虽然供应商提供的基准测试结果需要谨慎对待,但源代码已在GitHub上公开,用户可以独立验证其性能。
MiniMax明确表示要取代DeepSeek成为行业颠覆者,特别强调其上下文窗口(能够处理的输入量)达到100万个token,与Google Gemini 2.5 Pro相当,是DeepSeek R1容量的八倍。
在输出方面,该模型可以处理8万个token,优于DeepSeek的6.4万token容量,但略逊于OpenAI o3的10万token输出能力。
得到阿里巴巴集团、腾讯和IDG资本支持的MiniMax声称,其Lightning Attention机制通过改善注意力矩阵计算方式,提高了训练和推理效率,使M1模型在处理长上下文输入和推理时具有优势。
该公司声称:"例如,在执行8万token的深度推理时,它只需要DeepSeek R1约30%的计算能力。这一特性使我们在训练和推理方面都具有显著的计算效率优势。"
这种更高效的计算方法,结合名为CISPO的改进强化学习算法(详见M1技术报告),转化为更低的计算成本。
MiniMax声称:"整个强化学习阶段仅使用512块英伟达H800芯片运行三周,租赁成本仅为53.74万美元。这比最初预期少了一个数量级。"
好文章,需要你的鼓励
Birk Jernstrom在Shopify收购其上一家初创公司后,创立了货币化平台Polar,专注帮助开发者构建单人独角兽企业。该平台为开发者提供支付基础设施服务,处理全球计费和税务问题,让企业从第一天起就能销售在线产品和SaaS订阅服务。Polar获得了Accel领投的1000万美元种子轮融资,自2024年9月推出以来已吸引1.8万名客户。
这项研究提出了"高效探测"方法,解决了掩码图像建模AI难以有效评估的问题。通过创新的多查询交叉注意力机制,该方法在减少90%参数的同时实现10倍速度提升,在七个基准测试中均超越传统方法。研究还发现注意力质量与分类性能的强相关性,生成可解释的注意力图谱,展现出优异的跨域适应性。团队承诺开源全部代码,推动技术普及应用。
OpenAI首席执行官奥特曼证实,Meta为挖角OpenAI和谷歌DeepMind的顶尖AI研究人员,开出了超过1亿美元的薪酬包。然而,这些挖角努力基本失败。奥特曼表示,员工们认为OpenAI在实现AGI方面机会更大,公司文化更注重创新使命而非高薪。Meta正在组建超级智能团队,但面临OpenAI、Anthropic等竞争对手的激烈竞争。
伊利诺伊大学研究团队开发了CLAIMSPECT系统,通过层次化分解复杂争议、智能检索相关文献、多角度收集观点的方法,将传统的"真假"判断转变为多维度分析。该系统能够自动构建争议话题的分析框架,识别不同观点及其支撑证据,为科学和政治争议提供更全面客观的分析,已在生物医学和国际关系领域验证有效性。