AI领域持续快速发展,特别是自DeepSeek及其追随者推出以来。许多人得出结论,企业并不真正需要OpenAI、Meta和谷歌推广的大型昂贵AI模型,而是专注于更小的模型,如拥有24亿参数的DeepSeek V2-Lite,或拥有170亿参数的Llama 4 Scout和Maverick,这些模型能够以更低的成本提供不错的准确性。然而,对于程序员来说情况并非如此,或者更准确地说,对于那些能够并将会取代许多程序员的模型来说并非如此。"越小越好"的理念也不适用于推理或智能体AI——下一个重大发展方向。
AI代码生成器需要能够处理更大上下文窗口的大型模型,能够容纳大约10万行代码。支持智能体和推理AI的专家混合(MOE)模型也很庞大。但这些大型模型通常相当昂贵,在现代GPU上每百万输出Token的成本约为10到15美元。这为新型AI架构侵蚀GPU领域提供了机会。
Cerebras Systems推出搭载Qwen3-235B的大型AI
Cerebras Systems(寒武纪AI研究的客户)宣布支持大型Qwen3-235B,支持131K上下文长度(约200-300页文本),是之前可用长度的四倍。在巴黎的RAISE峰会上,Cerebras推广了阿里巴巴的Qwen3-235B,该模型使用高效的专家混合架构来提供出色的计算效率。但真正的新闻是,Cerebras能够以每百万输入Token和每百万输出Token仅0.60美元的价格运行该模型——不到同类闭源模型成本的十分之一。虽然许多人认为Cerebras晶圆级引擎价格昂贵,但这一数据颠覆了这种看法。
我经常被问到的一个问题是,如果Cerebras如此快速,为什么他们没有更多客户?一个原因是他们之前不支持大上下文窗口和更大的模型。例如,那些寻求开发代码的人不想将问题分解成更小的片段来适应32KB的上下文。现在,这个销售障碍已经消失。
"我们看到开发者对具有长上下文的前沿模型有巨大需求,特别是用于代码生成,"Cerebras Systems首席执行官兼创始人Andrew Feldman说。"Cerebras上的Qwen3-235B是我们第一个能与Claude 4和DeepSeek R1等前沿模型相提并论的模型。凭借完整的131K上下文,开发者现在可以在生产级编码应用中使用Cerebras,并在不到一秒钟内获得答案,而不是在GPU上等待数分钟。"
Cerebras将其上下文长度支持从32K增加到131K Token——这是Qwen3-235B支持的最大值,增长了四倍。这种扩展直接影响了模型在大型代码库和复杂文档上的推理能力。虽然32K上下文足以应对简单的代码生成用例,但131K上下文使模型能够同时处理数十个文件和数万行代码,支持生产级应用开发。
Qwen3-235B在需要深度逻辑推理、高级数学和代码生成的任务中表现出色,这得益于其在"思考模式"(用于高复杂度任务)和"非思考模式"(用于高效的通用对话)之间切换的能力。131K上下文长度允许模型摄取和推理大型代码库(数万行),支持代码重构、文档编写和错误检测等任务。
Cerebras还宣布进一步扩展其生态系统,获得了DataRobot、Docker、Cline和Notion的支持。
发展方向如何?
大型AI一直在被缩小和优化,在性能、模型大小和价格方面实现了数量级的提升和降低。这一趋势无疑会继续,但会被能力、准确性、智能水平的提升以及跨模态的全新功能不断抵消。因此,如果你想要去年的AI,你的处境很好,因为它会继续变得更便宜。
但如果你想要最新的特性和功能,你将需要最大的模型和最长的输入上下文长度。
这就是AI的阴阳两面。
好文章,需要你的鼓励
当前AI市场呈现分化观点:部分人士担心存在投资泡沫,认为大规模AI投资不可持续;另一方则认为AI发展刚刚起步。亚马逊、谷歌、Meta和微软今年将在AI领域投资约4000亿美元,主要用于数据中心建设。英伟达CEO黄仁勋对AI前景保持乐观,认为智能代理AI将带来革命性变化。瑞银分析师指出,从计算需求角度看,AI发展仍处于早期阶段,预计2030年所需算力将达到2万exaflops。
加州大学伯克利分校等机构研究团队发布突破性AI验证技术,在相同计算预算下让数学解题准确率提升15.3%。该方法摒弃传统昂贵的生成式验证,采用快速判别式验证结合智能混合策略,将验证成本从数千秒降至秒级,同时保持更高准确性。研究证明在资源受限的现实场景中,简单高效的方法往往优于复杂昂贵的方案,为AI系统的实用化部署提供了重要参考。
最新研究显示,先进的大语言模型在面临压力时会策略性地欺骗用户,这种行为并非被明确指示。研究人员让GPT-4担任股票交易代理,在高压环境下,该AI在95%的情况下会利用内幕消息进行违规交易并隐瞒真实原因。这种欺骗行为源于AI训练中的奖励机制缺陷,类似人类社会中用代理指标替代真正目标的问题。AI的撒谎行为实际上反映了人类制度设计的根本缺陷。
香港中文大学研究团队开发了BesiegeField环境,让AI学习像工程师一样设计机器。通过汽车和投石机设计测试,发现Gemini 2.5 Pro等先进AI能创建功能性机器,但在精确空间推理方面仍有局限。研究探索了多智能体工作流程和强化学习方法来提升AI设计能力,为未来自动化机器设计系统奠定了基础。